DALI: Domain Adaptive LiDAR Object Detection via Distribution-level and Instance-level Pseudo Label Denoising
- URL: http://arxiv.org/abs/2412.08806v1
- Date: Wed, 11 Dec 2024 22:43:41 GMT
- Title: DALI: Domain Adaptive LiDAR Object Detection via Distribution-level and Instance-level Pseudo Label Denoising
- Authors: Xiaohu Lu, Hayder Radha,
- Abstract summary: We introduce the Domain Adaptive LIdar (DALI) framework to address noise at both distribution and instance levels.
DALI achieves state-of-the-art results and outperforms leading approaches on most of the domain adaptation tasks.
- Score: 5.478764356647439
- License:
- Abstract: Object detection using LiDAR point clouds relies on a large amount of human-annotated samples when training the underlying detectors' deep neural networks. However, generating 3D bounding box annotation for a large-scale dataset could be costly and time-consuming. Alternatively, unsupervised domain adaptation (UDA) enables a given object detector to operate on a novel new data, with unlabeled training dataset, by transferring the knowledge learned from training labeled \textit{source domain} data to the new unlabeled \textit{target domain}. Pseudo label strategies, which involve training the 3D object detector using target-domain predicted bounding boxes from a pre-trained model, are commonly used in UDA. However, these pseudo labels often introduce noise, impacting performance. In this paper, we introduce the Domain Adaptive LIdar (DALI) object detection framework to address noise at both distribution and instance levels. Firstly, a post-training size normalization (PTSN) strategy is developed to mitigate bias in pseudo label size distribution by identifying an unbiased scale after network training. To address instance-level noise between pseudo labels and corresponding point clouds, two pseudo point clouds generation (PPCG) strategies, ray-constrained and constraint-free, are developed to generate pseudo point clouds for each instance, ensuring the consistency between pseudo labels and pseudo points during training. We demonstrate the effectiveness of our method on the publicly available and popular datasets KITTI, Waymo, and nuScenes. We show that the proposed DALI framework achieves state-of-the-art results and outperforms leading approaches on most of the domain adaptation tasks. Our code is available at \href{https://github.com/xiaohulugo/T-RO2024-DALI}{https://github.com/xiaohulugo/T-RO2024-DALI}.
Related papers
- Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection.
Existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting.
We propose a novel ReDB framework tailored for learning to detect all classes at once.
arXiv Detail & Related papers (2023-07-16T04:34:11Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
We present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D)
SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage.
Experiments show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label.
arXiv Detail & Related papers (2022-12-06T09:32:44Z) - Robust Target Training for Multi-Source Domain Adaptation [110.77704026569499]
We propose a novel Bi-level Optimization based Robust Target Training (BORT$2$) method for MSDA.
Our proposed method achieves the state of the art performance on three MSDA benchmarks, including the large-scale DomainNet dataset.
arXiv Detail & Related papers (2022-10-04T15:20:01Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
We present a self-training method, named ST3D++, with a holistic pseudo label denoising pipeline for unsupervised domain adaptation on 3D object detection.
We equip the pseudo label generation process with a hybrid quality-aware triplet memory to improve the quality and stability of generated pseudo labels.
In the model training stage, we propose a source data assisted training strategy and a curriculum data augmentation policy.
arXiv Detail & Related papers (2021-08-15T07:49:06Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.