Brain-inspired AI Agent: The Way Towards AGI
- URL: http://arxiv.org/abs/2412.08875v1
- Date: Thu, 12 Dec 2024 02:15:48 GMT
- Title: Brain-inspired AI Agent: The Way Towards AGI
- Authors: Bo Yu, Jiangning Wei, Minzhen Hu, Zejie Han, Tianjian Zou, Ye He, Jun Liu,
- Abstract summary: Researchers in brain-inspired AI seek inspiration from the operational mechanisms of the human brain, aiming to replicate its functional rules in intelligent models.<n>We propose the concept of a brain-inspired AI agent and analyze how to extract relatively feasible and agent-compatible cortical region functionalities.<n> Implementing these structures within an agent enables it to achieve basic cognitive intelligence akin to human capabilities.
- Score: 5.867107330135988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial General Intelligence (AGI), widely regarded as the fundamental goal of artificial intelligence, represents the realization of cognitive capabilities that enable the handling of general tasks with human-like proficiency. Researchers in brain-inspired AI seek inspiration from the operational mechanisms of the human brain, aiming to replicate its functional rules in intelligent models. Moreover, with the rapid development of large-scale models in recent years, the concept of agents has garnered increasing attention, with researchers widely recognizing it as a necessary pathway toward achieving AGI. In this article, we propose the concept of a brain-inspired AI agent and analyze how to extract relatively feasible and agent-compatible cortical region functionalities and their associated functional connectivity networks from the complex mechanisms of the human brain. Implementing these structures within an agent enables it to achieve basic cognitive intelligence akin to human capabilities. Finally, we explore the limitations and challenges for realizing brain-inspired agents and discuss their future development.
Related papers
- A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.
This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.
As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.
This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Probing for Consciousness in Machines [3.196204482566275]
This study explores the potential for artificial agents to develop core consciousness.
The emergence of core consciousness relies on the integration of a self model, informed by representations of emotions and feelings, and a world model.
Our results demonstrate that the agent can form rudimentary world and self models, suggesting a pathway toward developing machine consciousness.
arXiv Detail & Related papers (2024-11-25T10:27:07Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods.
Despite the impressive advancements achieved by deep learning models, they still have shortcomings in abstract reasoning and causal understanding.
arXiv Detail & Related papers (2024-01-03T09:46:36Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - When Brain-inspired AI Meets AGI [40.96159978312796]
We provide a comprehensive overview of brain-inspired AI from the perspective of Artificial General Intelligence.
We begin with the current progress in brain-inspired AI and its extensive connection with AGI.
We then cover the important characteristics for both human intelligence and AGI.
arXiv Detail & Related papers (2023-03-28T12:46:38Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
More brain-like capacities may demand new theories, models, and methods for designing artificial learning systems.
This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
arXiv Detail & Related papers (2021-05-15T19:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.