Temporal Numeric Planning with Patterns
- URL: http://arxiv.org/abs/2412.09101v2
- Date: Wed, 18 Dec 2024 12:31:58 GMT
- Title: Temporal Numeric Planning with Patterns
- Authors: Matteo Cardellini, Enrico Giunchiglia,
- Abstract summary: We consider temporal numeric planning problems $Pi$ expressed in PDDL2.1 level 3.
We show how to produce formulas $(i)$ whose models correspond to valid plans of $Pi$, and $(ii)$ that extend the recently proposed planning with patterns approach from the numeric to the temporal case.
- Score: 0.4972323953932129
- License:
- Abstract: We consider temporal numeric planning problems $\Pi$ expressed in PDDL2.1 level 3, and show how to produce SMT formulas $(i)$ whose models correspond to valid plans of $\Pi$, and $(ii)$ that extend the recently proposed planning with patterns approach from the numeric to the temporal case. We prove the correctness and completeness of the approach and show that it performs very well on 10 domains with required concurrency.
Related papers
- Symbolic Numeric Planning with Patterns [1.450144681559089]
We encode the problem of finding a plan for $Pi$ with bound $n$ as a formula with fewer variables and/or clauses than the state-of-the-art rolled-up and relaxed-relaxed-$exists$ encodings.
We show that our planner Patty has remarkably good comparative performances on this year's International Planning Competition.
arXiv Detail & Related papers (2023-12-15T17:20:25Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents [26.78244595330595]
"$underlineD$escribe" is an interactive planning approach based on Large Language Models (LLMs)
DEPS facilitates better error correction on initial LLM-generated $textitplan$ by integrating $textitdescription$ of the plan execution process.
Experiments mark the milestone of the first zero-shot multi-task agent that can robustly accomplish 70+ Minecraft tasks.
arXiv Detail & Related papers (2023-02-03T06:06:27Z) - Near-Optimal Regret Bounds for Multi-batch Reinforcement Learning [54.806166861456035]
We study the episodic reinforcement learning (RL) problem modeled by finite-horizon Markov Decision Processes (MDPs) with constraint on the number of batches.
We design a computational efficient algorithm to achieve near-optimal regret of $tildeO(sqrtSAH3Kln (1/delta))$tildeO(cdot) hides logarithmic terms of $(S,A,H,K)$ in $K$ episodes.
Our technical contribution are two-fold: 1) a near-optimal design scheme to explore
arXiv Detail & Related papers (2022-10-15T09:22:22Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
We consider episodic reinforcement learning in reward-mixing Markov decision processes (RMMDPs)
Our goal is to learn a near-optimal policy that nearly maximizes the $H$ time-step cumulative rewards in such a model.
arXiv Detail & Related papers (2022-10-05T22:52:00Z) - TensorPlan and the Few Actions Lower Bound for Planning in MDPs under
Linear Realizability of Optimal Value Functions [0.0]
We consider the minimax query complexity of online planning with a generative model in fixed-horizon decision processes.
We show that an exponentially large lower bound holds when $A=Omega(min(d1/4,H1/2)).
arXiv Detail & Related papers (2021-10-05T17:42:46Z) - On Exploiting Hitting Sets for Model Reconciliation [53.81101846598925]
In human-aware planning, a planning agent may need to provide an explanation to a human user on why its plan is optimal.
A popular approach to do this is called model reconciliation, where the agent tries to reconcile the differences in its model and the human's model.
We present a logic-based framework for model reconciliation that extends beyond the realm of planning.
arXiv Detail & Related papers (2020-12-16T21:25:53Z) - Nearly Minimax Optimal Reward-free Reinforcement Learning [88.75843804630772]
We study the reward-free reinforcement learning framework, which is particularly suitable for batch reinforcement learning and scenarios where one needs policies for multiple reward functions.
We give a new efficient algorithm, textbfStaged textbfSampling + textbfTruncated textbfPlanning (algoname), which interacts with the environment at most $Oleft( fracS2Aepsilon2textpolylogleft(fracSAHepsilon2
arXiv Detail & Related papers (2020-10-12T17:51:19Z) - Improving Robustness and Generality of NLP Models Using Disentangled
Representations [62.08794500431367]
Supervised neural networks first map an input $x$ to a single representation $z$, and then map $z$ to the output label $y$.
We present methods to improve robustness and generality of NLP models from the standpoint of disentangled representation learning.
We show that models trained with the proposed criteria provide better robustness and domain adaptation ability in a wide range of supervised learning tasks.
arXiv Detail & Related papers (2020-09-21T02:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.