Lifshitz tail states in non-Hermitian disordered photonic lattices
- URL: http://arxiv.org/abs/2412.09106v2
- Date: Mon, 13 Jan 2025 06:53:43 GMT
- Title: Lifshitz tail states in non-Hermitian disordered photonic lattices
- Authors: Stefano Longhi,
- Abstract summary: Anderson localization near the band edges can exhibit anomalously weak localization in the form of Lifshitz tail states.
Lifshitz tail states correspond to clusters of contiguous sites with nearly identical on-site energies.
We show that when Anderson localization is induced by disorder in an imaginary on-site potential, Lifshitz tail states can dominate the system's dynamics and become experimentally observable.
- Score: 0.0
- License:
- Abstract: In lattices with uncorrelated on-site potential disorder, Anderson localization near the band edges can exhibit anomalously weak localization in the form of Lifshitz tail states. These states correspond to clusters of contiguous sites with nearly identical on-site energies, allowing excitations to extend significantly beyond the characteristic localization length determined by the inverse of Lyapunov exponent. Since Lifshitz tail states are rare events, with an exponentially small density of states, they are typically considered of limited practical importance. In this work, we demonstrate that when Anderson localization is induced by disorder in an imaginary on-site potential, Lifshitz tail states can dominate the system's dynamics and become experimentally observable. This phenomenon is illustrated through the Anderson-Bernoulli model in a non-Hermitian photonic lattice, shedding light on the unique interplay between disorder and non-Hermiticity in such systems
Related papers
- Non-Hermitian extended midgap states and bound states in the continuum [0.0]
We find two flavours of bound states in the continuum, both stable even in the absence of chiral symmetry.
Results clarify fundamental aspects of topology, and symmetry in the light of different approaches to the anomalous non-Hermitan bulk-boundary correspondence.
arXiv Detail & Related papers (2023-10-27T16:58:04Z) - Robust extended states in Anderson model on partially disordered random
regular graphs [44.99833362998488]
It is shown that the mobility edge in the spectrum survives in a certain range of parameters $(d,beta)$ at infinitely large uniformly distributed disorder.
The duality in the localization properties between the sparse and extremely dense RRG has been found and understood.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Absence of Mobility Edge in Short-range Uncorrelated Disordered Model:
Coexistence of Localized and Extended States [0.0]
We provide an example of a nearest-neighbor tight-binding disordered model which carries both localized and extended states without forming the mobility edge (ME)
We map the above model to the 1D Anderson model with matrix-size- and position-dependent hopping and confirm the coexistence of localized and extended states.
In addition, the mapping shows that the extended states are non-ergodic and allows to analytically estimate their fractal dimensions.
arXiv Detail & Related papers (2023-05-03T18:00:03Z) - Anderson localization without eigenstates in photonic quantum walks [0.0]
Anderson localization is ubiquitous in wavy systems with strong static and uncorrelated disorder.
In one-dimensional lattices with off-diagonal disorder Anderson localization can persist for arbitrary time-dependent drivings.
arXiv Detail & Related papers (2023-04-16T07:36:28Z) - Anderson localization in dissipative lattices [0.0]
Anderson localization predicts that wave spreading in disordered lattices can come to a complete halt.
We consider the purely-dissipative Anderson model in the framework of a Lindblad master equation.
arXiv Detail & Related papers (2023-04-16T07:23:07Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Accumulation of scale-free localized states induced by local
non-Hermiticity [1.2514666672776884]
We show that the local non-Hermiticity generated scale-free localization is a general phenomenon and can even survive the quasiperiodic disorder.
Our results indicate that the bulk properties of the original Hermitian system can be globally reshaped by local non-Hermiticity.
arXiv Detail & Related papers (2023-02-06T14:17:52Z) - Anomalously large relaxation times in dissipative lattice models beyond
the non-Hermitian skin effect [49.1574468325115]
We show for generic quantum non-Hermitian tight-binding models that relaxation of local observables are not controlled by the localization length.
interference between eigenvectors effectively makes the extreme localization of modes largely irrelevant to relaxation.
Our work highlights an important aspect of the non-Hermitian skin effect: the exceptional sensitivity to boundary conditions here necessarily takes a finite amount of time to manifest itself.
arXiv Detail & Related papers (2022-10-25T17:55:58Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.