The Utility and Complexity of in- and out-of-Distribution Machine Unlearning
- URL: http://arxiv.org/abs/2412.09119v2
- Date: Wed, 12 Feb 2025 09:38:31 GMT
- Title: The Utility and Complexity of in- and out-of-Distribution Machine Unlearning
- Authors: Youssef Allouah, Joshua Kazdan, Rachid Guerraoui, Sanmi Koyejo,
- Abstract summary: We analyze the fundamental utility, time, and space complexity trade-offs of approximate unlearning.
We propose a new robust and noisy gradient descent variant that provably amortizes unlearning time complexity without compromising utility.
- Score: 16.879887267565742
- License:
- Abstract: Machine unlearning, the process of selectively removing data from trained models, is increasingly crucial for addressing privacy concerns and knowledge gaps post-deployment. Despite this importance, existing approaches are often heuristic and lack formal guarantees. In this paper, we analyze the fundamental utility, time, and space complexity trade-offs of approximate unlearning, providing rigorous certification analogous to differential privacy. For in-distribution forget data -- data similar to the retain set -- we show that a surprisingly simple and general procedure, empirical risk minimization with output perturbation, achieves tight unlearning-utility-complexity trade-offs, addressing a previous theoretical gap on the separation from unlearning "for free" via differential privacy, which inherently facilitates the removal of such data. However, such techniques fail with out-of-distribution forget data -- data significantly different from the retain set -- where unlearning time complexity can exceed that of retraining, even for a single sample. To address this, we propose a new robust and noisy gradient descent variant that provably amortizes unlearning time complexity without compromising utility.
Related papers
- Adversarial Mixup Unlearning [16.89710766008491]
We introduce a novel approach that regularizes the unlearning process by utilizing synthesized mixup samples.
At the core of our approach is a generator-unlearner framework, MixUnlearn.
We show that our method significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2025-02-14T16:50:33Z) - Machine Unlearning via Information Theoretic Regularization [3.05179671246628]
We introduce a mathematical framework based on information-theoretic regularization to address both feature and data point unlearning.
By combining flexibility in learning objectives with simplicity in regularization design, our approach is highly adaptable and practical for a wide range of machine learning and AI applications.
arXiv Detail & Related papers (2025-02-08T20:33:06Z) - Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting [4.220336689294245]
We propose Distribution-Level Feature Distancing (DLFD), a novel method that efficiently forgets instances while preserving task-relevant feature correlations.
Our method synthesizes data samples by optimizing the feature distribution to be distinctly different from that of forget samples, achieving effective results within a single training epoch.
arXiv Detail & Related papers (2024-09-23T06:51:10Z) - Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning [50.382793324572845]
Distributed computing involves communication between devices, which requires solving two key problems: efficiency and privacy.
In this paper, we analyze a new method that incorporates the ideas of using data similarity and clients sampling.
To address privacy concerns, we apply the technique of additional noise and analyze its impact on the convergence of the proposed method.
arXiv Detail & Related papers (2024-09-22T00:49:10Z) - Dataset Condensation Driven Machine Unlearning [0.0]
Current trend in data regulation requirements and privacy-preserving machine learning has emphasized the importance of machine unlearning.
We propose new dataset condensation techniques and an innovative unlearning scheme that strikes a balance between machine unlearning privacy, utility, and efficiency.
We present a novel and effective approach to instrumenting machine unlearning and propose its application in defending against membership inference and model inversion attacks.
arXiv Detail & Related papers (2024-01-31T21:48:25Z) - Heterogeneous Target Speech Separation [52.05046029743995]
We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts.
Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts.
arXiv Detail & Related papers (2022-04-07T17:14:20Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
Federated Learning is a novel framework that allows multiple devices or institutions to train a machine learning model collaboratively while preserving their data private.
In this work, we formally classify data statistical heterogeneity and review the most remarkable learning strategies that are able to face it.
At the same time, we introduce approaches from other machine learning frameworks, such as Continual Learning, that also deal with data heterogeneity and could be easily adapted to the Federated Learning settings.
arXiv Detail & Related papers (2021-11-26T09:57:11Z) - On Covariate Shift of Latent Confounders in Imitation and Reinforcement
Learning [69.48387059607387]
We consider the problem of using expert data with unobserved confounders for imitation and reinforcement learning.
We analyze the limitations of learning from confounded expert data with and without external reward.
We validate our claims empirically on challenging assistive healthcare and recommender system simulation tasks.
arXiv Detail & Related papers (2021-10-13T07:31:31Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
Contrastive learning is a family of self-supervised methods where a model is trained to solve a classification task constructed from unlabeled data.
We show that a properly constructed contrastive learning task can be used to estimate the transition kernel for small-to-mid-range intervals in the diffusion case.
arXiv Detail & Related papers (2021-03-03T23:06:47Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.