Evaluating the Potential of In-Memory Processing to Accelerate Homomorphic Encryption
- URL: http://arxiv.org/abs/2412.09144v1
- Date: Thu, 12 Dec 2024 10:28:58 GMT
- Title: Evaluating the Potential of In-Memory Processing to Accelerate Homomorphic Encryption
- Authors: Mpoki Mwaisela, Joel Hari, Peterson Yuhala, Jämes Ménétrey, Pascal Felber, Valerio Schiavoni,
- Abstract summary: homomorphic encryption (HE) allows computation without the need for decryption.
The high computational and memory overhead associated with the underlying cryptographic operations has hindered the practicality of HE-based solutions.
processing in-memory (PIM) presents a promising solution to this problem by bringing computation closer to data, thereby reducing the overhead resulting from processor-memory data movements.
- Score: 1.5707609236065612
- License:
- Abstract: The widespread adoption of cloud-based solutions introduces privacy and security concerns. Techniques such as homomorphic encryption (HE) mitigate this problem by allowing computation over encrypted data without the need for decryption. However, the high computational and memory overhead associated with the underlying cryptographic operations has hindered the practicality of HE-based solutions. While a significant amount of research has focused on reducing computational overhead by utilizing hardware accelerators like GPUs and FPGAs, there has been relatively little emphasis on addressing HE memory overhead. Processing in-memory (PIM) presents a promising solution to this problem by bringing computation closer to data, thereby reducing the overhead resulting from processor-memory data movements. In this work, we evaluate the potential of a PIM architecture from UPMEM for accelerating HE operations. Firstly, we focus on PIM-based acceleration for polynomial operations, which underpin HE algorithms. Subsequently, we conduct a case study analysis by integrating PIM into two popular and open-source HE libraries, OpenFHE and HElib. Our study concludes with key findings and takeaways gained from the practical application of HE operations using PIM, providing valuable insights for those interested in adopting this technology.
Related papers
- Enabling Low-Cost Secure Computing on Untrusted In-Memory Architectures [5.565715369147691]
Processing-in-Memory (PIM) promises to substantially improve performance by moving processing closer to the data.
Integrating PIM modules within a secure computing system raises an interesting challenge: unencrypted data has to move off-chip to the PIM, exposing the data to attackers and breaking assumptions on Trusted Computing Bases (TCBs)
This paperleverages multi-party computation (MPC) techniques, specifically arithmetic secret sharing and Yao's garbled circuits, to outsource bandwidth-intensive computation securely to PIM.
arXiv Detail & Related papers (2025-01-28T20:48:14Z) - PhD Forum: Efficient Privacy-Preserving Processing via Memory-Centric Computing [0.0]
Homomorphic encryption (HE) and secure multi-party computation (SMPC) enhance data security by enabling processing on encrypted data.
Existing approaches focus on improving computational overhead using specialized hardware.
We propose a framework that uses recently available PIM hardware to achieve efficient privacy-preserving computation.
arXiv Detail & Related papers (2024-09-25T09:37:50Z) - Secure and Efficient General Matrix Multiplication On Cloud Using Homomorphic Encryption [21.253885519048016]
Homomorphic Encryption (HE) has emerged as an effective tool in assuring privacy and security for sensitive applications.
One major obstacle to employing HE-based computation is its excessive computational cost.
arXiv Detail & Related papers (2024-05-03T16:50:02Z) - FHEmem: A Processing In-Memory Accelerator for Fully Homomorphic Encryption [9.884698447131374]
Homomorphic Encryption (FHE) is a technique that allows arbitrary computations to be performed on encrypted data without the need for decryption.
FHE is significantly slower than computation on plain data due to the increase in data size after encryption.
We propose a PIM-based FHE accelerator, FHEmem, which exploits a novel processing in-memory architecture.
arXiv Detail & Related papers (2023-11-27T20:11:38Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
We introduce the Epitome, a lightweight neural operator offering convolution-like functionality.
On the software side, we evaluate epitomes' latency and energy on PIM accelerators.
We introduce a PIM-aware layer-wise design method to enhance their hardware efficiency.
arXiv Detail & Related papers (2023-11-12T17:56:39Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns.
We propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving pattern privacy (PP)
We develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions.
arXiv Detail & Related papers (2023-02-09T12:50:18Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.