Building a Privacy Web with SPIDEr -- Secure Pipeline for Information De-Identification with End-to-End Encryption
- URL: http://arxiv.org/abs/2412.09222v1
- Date: Thu, 12 Dec 2024 12:24:12 GMT
- Title: Building a Privacy Web with SPIDEr -- Secure Pipeline for Information De-Identification with End-to-End Encryption
- Authors: Novoneel Chakraborty, Anshoo Tandon, Kailash Reddy, Kaushal Kirpekar, Bryan Paul Robert, Hari Dilip Kumar, Abhilash Venkatesh, Abhay Sharma,
- Abstract summary: SPIDEr is an end-to-end encrypted data de-identification pipeline.
It supports suppression, pseudonymisation, generalisation, and aggregation.
We present our design of the control flows for end-to-end secure execution of de-identification operations within a TEE.
- Score: 3.8909411486426033
- License:
- Abstract: Data de-identification makes it possible to glean insights from data while preserving user privacy. The use of Trusted Execution Environments (TEEs) allow for the execution of de-identification applications on the cloud without the need for a user to trust the third-party application provider. In this paper, we present \textit{SPIDEr - Secure Pipeline for Information De-Identification with End-to-End Encryption}, our implementation of an end-to-end encrypted data de-identification pipeline. SPIDEr supports classical anonymisation techniques such as suppression, pseudonymisation, generalisation, and aggregation, as well as techniques that offer a formal privacy guarantee such as k-anonymisation and differential privacy. To enable scalability and improve performance on constrained TEE hardware, we enable batch processing of data for differential privacy computations. We present our design of the control flows for end-to-end secure execution of de-identification operations within a TEE. As part of the control flow for running SPIDEr within the TEE, we perform attestation, a process that verifies that the software binaries were properly instantiated on a known, trusted platform.
Related papers
- Distributed Identity for Zero Trust and Segmented Access Control: A Novel Approach to Securing Network Infrastructure [4.169915659794567]
This study assesses security improvements achieved when distributed identity is employed with ZTA principle.
The study suggests adopting distributed identities can enhance overall security postures by an order of magnitude.
The research recommends refining technical standards, expanding the use of distributed identity in practice, and its applications for the contemporary digital security landscape.
arXiv Detail & Related papers (2025-01-14T00:02:02Z) - Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
We propose an architecture for blockchain-based PAISs aimed at preserving both confidentiality and transparency.
Smart contracts enact, enforce and store public interactions, while attribute-based encryption techniques are adopted to specify access grants to confidential information.
arXiv Detail & Related papers (2024-12-07T20:18:36Z) - FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
This study proposes an advanced Learning (FL) framework designed to enhance data privacy and security in IoT environments.
We integrate Decentralized Attribute-Based Encryption (DABE), Homomorphic Encryption (HE), Secure Multi-Party Computation (SMPC) and technology.
Unlike traditional FL, our framework enables secure, decentralized authentication and encryption directly on IoT devices.
arXiv Detail & Related papers (2024-10-26T19:30:53Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Practical Privacy-Preserving Identity Verification using Third-Party Cloud Services and FHE (Role of Data Encoding in Circuit Depth Management) [0.0]
Governments seek to outsource national digital identity verification systems to third-party cloud services.
This leads to increased concerns regarding the privacy of users' personal data.
We propose a privacy-preserving digital identity (ID) verification protocol where the third-party cloud services process the identity data encrypted.
arXiv Detail & Related papers (2024-08-15T08:12:07Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Blockchain-enabled Data Governance for Privacy-Preserved Sharing of Confidential Data [1.6006586061577806]
We propose a blockchain-based data governance system that employs attribute-based encryption to prevent privacy leakage and credential misuse.
First, our ABE encryption system can handle multi-authority use cases while protecting identity privacy and hiding access policy.
Second, applying the Advanced Encryption Standard (AES) for data encryption makes the whole system efficient and responsive to real-world conditions.
arXiv Detail & Related papers (2023-09-08T05:01:59Z) - BeeTrace: A Unified Platform for Secure Contact Tracing that Breaks Data
Silos [73.84437456144994]
Contact tracing is an important method to control the spread of an infectious disease such as COVID-19.
Current solutions do not utilize the huge volume of data stored in business databases and individual digital devices.
We propose BeeTrace, a unified platform that breaks data silos and deploys state-of-the-art cryptographic protocols to guarantee privacy goals.
arXiv Detail & Related papers (2020-07-05T10:33:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.