Beware of Metacognitive Laziness: Effects of Generative Artificial Intelligence on Learning Motivation, Processes, and Performance
- URL: http://arxiv.org/abs/2412.09315v1
- Date: Thu, 12 Dec 2024 14:32:39 GMT
- Title: Beware of Metacognitive Laziness: Effects of Generative Artificial Intelligence on Learning Motivation, Processes, and Performance
- Authors: Yizhou Fan, Luzhen Tang, Huixiao Le, Kejie Shen, Shufang Tan, Yueying Zhao, Yuan Shen, Xinyu Li, Dragan Gašević,
- Abstract summary: The concept of hybrid intelligence is still at a nascent stage.
How learners can benefit from a symbiotic relationship with various agents is still unknown.
ChatGPT may promote learners' dependence on technology and potentially trigger metacognitive laziness.
- Score: 15.064064880549232
- License:
- Abstract: With the continuous development of technological and educational innovation, learners nowadays can obtain a variety of support from agents such as teachers, peers, education technologies, and recently, generative artificial intelligence such as ChatGPT. The concept of hybrid intelligence is still at a nascent stage, and how learners can benefit from a symbiotic relationship with various agents such as AI, human experts and intelligent learning systems is still unknown. The emerging concept of hybrid intelligence also lacks deep insights and understanding of the mechanisms and consequences of hybrid human-AI learning based on strong empirical research. In order to address this gap, we conducted a randomised experimental study and compared learners' motivations, self-regulated learning processes and learning performances on a writing task among different groups who had support from different agents (ChatGPT, human expert, writing analytics tools, and no extra tool). A total of 117 university students were recruited, and their multi-channel learning, performance and motivation data were collected and analysed. The results revealed that: learners who received different learning support showed no difference in post-task intrinsic motivation; there were significant differences in the frequency and sequences of the self-regulated learning processes among groups; ChatGPT group outperformed in the essay score improvement but their knowledge gain and transfer were not significantly different. Our research found that in the absence of differences in motivation, learners with different supports still exhibited different self-regulated learning processes, ultimately leading to differentiated performance. What is particularly noteworthy is that AI technologies such as ChatGPT may promote learners' dependence on technology and potentially trigger metacognitive laziness.
Related papers
- Generative AI in Education: A Study of Educators' Awareness, Sentiments, and Influencing Factors [2.217351976766501]
This study delves into university instructors' experiences and attitudes toward AI language models.
We find no correlation between teaching style and attitude toward generative AI.
While CS educators show far more confidence in their technical understanding of generative AI tools, they show no more confidence in their ability to detect AI-generated work.
arXiv Detail & Related papers (2024-03-22T19:21:29Z) - Mathematics of multi-agent learning systems at the interface of game
theory and artificial intelligence [0.8049333067399385]
Evolutionary Game Theory and Artificial Intelligence are two fields that, at first glance, might seem distinct, but they have notable connections and intersections.
The former focuses on the evolution of behaviors (or strategies) in a population, where individuals interact with others and update their strategies based on imitation (or social learning)
The latter, meanwhile, is centered on machine learning algorithms and (deep) neural networks.
arXiv Detail & Related papers (2024-03-09T17:36:54Z) - Mimicking the Maestro: Exploring the Efficacy of a Virtual AI Teacher in
Fine Motor Skill Acquisition [3.07176124710244]
Motor skills, especially fine motor skills like handwriting, play an essential role in academic pursuits and everyday life.
Traditional methods to teach these skills, although effective, can be time-consuming and inconsistent.
We introduce an AI teacher model that captures the distinct characteristics of human instructors.
arXiv Detail & Related papers (2023-10-16T11:11:43Z) - AI Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in
CS Education [8.898863361318817]
We develop, implement, and evaluate a novel learning environment enriched with four distinct chatbots.
These roles cater to the three innate psychological needs of learners - competence, autonomy, and relatedness.
The system embraces an inquiry-based learning paradigm, encouraging students to ask questions, seek solutions, and explore their curiosities.
arXiv Detail & Related papers (2023-08-08T02:13:44Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - A Novel Multimodal Approach for Studying the Dynamics of Curiosity in
Small Group Learning [2.55061802822074]
We propose an integrated socio-cognitive account of curiosity that ties observable behaviors in peers to underlying curiosity states.
We make a bipartite distinction between individual and interpersonal functions that contribute to curiosity, and multimodal behaviors that fulfill these functions.
This work is a step towards designing learning technologies that can recognize and evoke moment-by-moment curiosity during learning in social contexts.
arXiv Detail & Related papers (2022-04-01T16:12:40Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.