All You Need in Knowledge Distillation Is a Tailored Coordinate System
- URL: http://arxiv.org/abs/2412.09388v2
- Date: Wed, 12 Feb 2025 10:55:54 GMT
- Title: All You Need in Knowledge Distillation Is a Tailored Coordinate System
- Authors: Junjie Zhou, Ke Zhu, Jianxin Wu,
- Abstract summary: Knowledge Distillation (KD) is essential in transferring dark knowledge from a large teacher to a small student network.
Existing KD methods rely on a large teacher trained specifically for the target task, which is both very inflexible and inefficient.
We argue that a SSL-pretrained model can effectively act as the teacher and its dark knowledge can be captured by the coordinate system.
- Score: 20.846344563444656
- License:
- Abstract: Knowledge Distillation (KD) is essential in transferring dark knowledge from a large teacher to a small student network, such that the student can be much more efficient than the teacher but with comparable accuracy. Existing KD methods, however, rely on a large teacher trained specifically for the target task, which is both very inflexible and inefficient. In this paper, we argue that a SSL-pretrained model can effectively act as the teacher and its dark knowledge can be captured by the coordinate system or linear subspace where the features lie in. We then need only one forward pass of the teacher, and then tailor the coordinate system (TCS) for the student network. Our TCS method is teacher-free and applies to diverse architectures, works well for KD and practical few-shot learning, and allows cross-architecture distillation with large capacity gap. Experiments show that TCS achieves significantly higher accuracy than state-of-the-art KD methods, while only requiring roughly half of their training time and GPU memory costs.
Related papers
- TIE-KD: Teacher-Independent and Explainable Knowledge Distillation for
Monocular Depth Estimation [1.03590082373586]
We introduce a novel Teacher-Independent Explainable Knowledge Distillation (TIE-KD) framework that streamlines the knowledge transfer from complex teacher models to compact student networks.
The cornerstone of TIE-KD is the Depth Probability Map (DPM), an explainable feature map that interprets the teacher's output.
Extensive evaluation of the KITTI dataset indicates that TIE-KD not only outperforms conventional response-based KD methods but also demonstrates consistent efficacy across diverse teacher and student architectures.
arXiv Detail & Related papers (2024-02-22T07:17:30Z) - CES-KD: Curriculum-based Expert Selection for Guided Knowledge
Distillation [4.182345120164705]
This paper proposes a new technique called Curriculum Expert Selection for Knowledge Distillation (CES-KD)
CES-KD is built upon the hypothesis that a student network should be guided gradually using stratified teaching curriculum.
Specifically, our method is a gradual TA-based KD technique that selects a single teacher per input image based on a curriculum driven by the difficulty in classifying the image.
arXiv Detail & Related papers (2022-09-15T21:02:57Z) - Knowledge Condensation Distillation [38.446333274732126]
Existing methods focus on excavating the knowledge hints and transferring the whole knowledge to the student.
In this paper, we propose Knowledge Condensation Distillation (KCD)
Our approach is easy to build on top of the off-the-shelf KD methods, with no extra training parameters and negligible overhead.
arXiv Detail & Related papers (2022-07-12T09:17:34Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
We propose the dynamic prior knowledge (DPK), which integrates part of teacher's features as the prior knowledge before the feature distillation.
Our DPK makes the performance of the student model positively correlated with that of the teacher model, which means that we can further boost the accuracy of students by applying larger teachers.
arXiv Detail & Related papers (2022-06-13T11:52:13Z) - Faculty Distillation with Optimal Transport [53.69235109551099]
We propose to link teacher's task and student's task by optimal transport.
Based on the semantic relationship between their label spaces, we can bridge the support gap between output distributions.
Experiments under various settings demonstrate the succinctness and versatility of our method.
arXiv Detail & Related papers (2022-04-25T09:34:37Z) - How and When Adversarial Robustness Transfers in Knowledge Distillation? [137.11016173468457]
This paper studies how and when the adversarial robustness can be transferred from a teacher model to a student model in Knowledge distillation (KD)
We show that standard KD training fails to preserve adversarial robustness, and we propose KD with input gradient alignment (KDIGA) for remedy.
Under certain assumptions, we prove that the student model using our proposed KDIGA can achieve at least the same certified robustness as the teacher model.
arXiv Detail & Related papers (2021-10-22T21:30:53Z) - Learning to Teach with Student Feedback [67.41261090761834]
Interactive Knowledge Distillation (IKD) allows the teacher to learn to teach from the feedback of the student.
IKD trains the teacher model to generate specific soft target at each training step for a certain student.
Joint optimization for both teacher and student is achieved by two iterative steps.
arXiv Detail & Related papers (2021-09-10T03:01:01Z) - Undistillable: Making A Nasty Teacher That CANNOT teach students [84.6111281091602]
This paper introduces and investigates a concept called Nasty Teacher: a specially trained teacher network that yields nearly the same performance as a normal one.
We propose a simple yet effective algorithm to build the nasty teacher, called self-undermining knowledge distillation.
arXiv Detail & Related papers (2021-05-16T08:41:30Z) - Learning from a Lightweight Teacher for Efficient Knowledge Distillation [14.865673786025525]
This paper proposes LW-KD, short for lightweight knowledge distillation.
It firstly trains a lightweight teacher network on a synthesized simple dataset, with an adjustable class number equal to that of a target dataset.
The teacher then generates soft target whereby an enhanced KD loss could guide student learning, which is a combination of KD loss and adversarial loss for making student output indistinguishable from the output of the teacher.
arXiv Detail & Related papers (2020-05-19T01:54:15Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
We propose a novel KD method that works by modeling the information flow through the various layers of the teacher model.
The proposed method is capable of overcoming the aforementioned limitations by using an appropriate supervision scheme during the different phases of the training process.
arXiv Detail & Related papers (2020-05-02T06:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.