A Semi Black-Box Adversarial Bit-Flip Attack with Limited DNN Model Information
- URL: http://arxiv.org/abs/2412.09450v1
- Date: Thu, 12 Dec 2024 17:04:57 GMT
- Title: A Semi Black-Box Adversarial Bit-Flip Attack with Limited DNN Model Information
- Authors: Behnam Ghavami, Mani Sadati, Mohammad Shahidzadeh, Lesley Shannon, Steve Wilton,
- Abstract summary: This paper proposes B3FA, a semi-black-box adversarial bit-flip attack on deep neural networks (DNNs)<n>We demonstrate the effectiveness of B3FA on several DNN models in a semi-black-box setting.<n>For example, B3FA could drop the accuracy of a MobileNetV2 from 69.84% to 9% with only 20 bit-flips in a real-world setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the rising prevalence of deep neural networks (DNNs) in cyber-physical systems, their vulnerability to adversarial bit-flip attacks (BFAs) is a noteworthy concern. This paper proposes B3FA, a semi-black-box BFA-based parameter attack on DNNs, assuming the adversary has limited knowledge about the model. We consider practical scenarios often feature a more restricted threat model for real-world systems, contrasting with the typical BFA models that presuppose the adversary's full access to a network's inputs and parameters. The introduced bit-flip approach utilizes a magnitude-based ranking method and a statistical re-construction technique to identify the vulnerable bits. We demonstrate the effectiveness of B3FA on several DNN models in a semi-black-box setting. For example, B3FA could drop the accuracy of a MobileNetV2 from 69.84% to 9% with only 20 bit-flips in a real-world setting.
Related papers
- ObfusBFA: A Holistic Approach to Safeguarding DNNs from Different Types of Bit-Flip Attacks [12.96840649714218]
Bit-flip attacks (BFAs) represent a serious threat to Deep Neural Networks (DNNs)<n>We propose ObfusBFA, an efficient and holistic methodology to mitigate BFAs.<n>We design novel algorithms to identify critical bits and insert obfuscation operations.
arXiv Detail & Related papers (2025-06-12T14:31:27Z) - Fault Injection and Safe-Error Attack for Extraction of Embedded Neural Network Models [1.2499537119440245]
We focus on embedded deep neural network models on 32-bit microcontrollers in the Internet of Things (IoT)
We propose a black-box approach to craft a successful attack set.
For a classical convolutional neural network, we successfully recover at least 90% of the most significant bits with about 1500 crafted inputs.
arXiv Detail & Related papers (2023-08-31T13:09:33Z) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training [54.622474306336635]
A new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques.
We propose a training-assisted bit flip attack, in which the adversary is involved in the training stage to build a high-risk model to release.
arXiv Detail & Related papers (2023-08-12T09:34:43Z) - Improving Robustness Against Adversarial Attacks with Deeply Quantized
Neural Networks [0.5849513679510833]
A disadvantage of Deep Neural Networks (DNNs) is their vulnerability to adversarial attacks, as they can be fooled by adding slight perturbations to the inputs.
This paper reports the results of devising a tiny DNN model, robust to adversarial black and white box attacks, trained with an automatic quantizationaware training framework.
arXiv Detail & Related papers (2023-04-25T13:56:35Z) - Towards Lightweight Black-Box Attacks against Deep Neural Networks [70.9865892636123]
We argue that black-box attacks can pose practical attacks where only several test samples are available.
As only a few samples are required, we refer to these attacks as lightweight black-box attacks.
We propose Error TransFormer (ETF) for lightweight attacks to mitigate the approximation error.
arXiv Detail & Related papers (2022-09-29T14:43:03Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Practical No-box Adversarial Attacks against DNNs [31.808770437120536]
We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model.
We propose three mechanisms for training with a very small dataset and find that prototypical reconstruction is the most effective.
Our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
arXiv Detail & Related papers (2020-12-04T11:10:03Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
We propose a Neural Process based black-box adversarial attack (NP-Attack)
NP-Attack could greatly decrease the query counts under the black-box setting.
arXiv Detail & Related papers (2020-09-24T06:22:56Z) - T-BFA: Targeted Bit-Flip Adversarial Weight Attack [36.80180060697878]
Bit-Flip-based adversarial weight Attack (BFA) injects an extremely small amount of faults into weight parameters to hijack the executing DNN function.
This paper proposes the first work of targeted BFA based (T-BFA) adversarial weight attack on DNNs, which can intentionally mislead selected inputs to a target output class.
arXiv Detail & Related papers (2020-07-24T03:58:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.