Do Multimodal Large Language Models See Like Humans?
- URL: http://arxiv.org/abs/2412.09603v1
- Date: Thu, 12 Dec 2024 18:59:25 GMT
- Title: Do Multimodal Large Language Models See Like Humans?
- Authors: Jiaying Lin, Shuquan Ye, Rynson W. H. Lau,
- Abstract summary: Multimodal Large Language Models (MLLMs) have achieved impressive results on various vision tasks, leveraging recent advancements in large language models.
Do MLLMs perceive visual information similarly to humans?
We introduce HVSBench, a large-scale benchmark designed to assess the alignment between MLLMs and the human visual system (HVS) on fundamental vision tasks that mirror human vision.
- Score: 50.938168841711445
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have achieved impressive results on various vision tasks, leveraging recent advancements in large language models. However, a critical question remains unaddressed: do MLLMs perceive visual information similarly to humans? Current benchmarks lack the ability to evaluate MLLMs from this perspective. To address this challenge, we introduce HVSBench, a large-scale benchmark designed to assess the alignment between MLLMs and the human visual system (HVS) on fundamental vision tasks that mirror human vision. HVSBench curated over 85K multimodal samples, spanning 13 categories and 5 fields in HVS, including Prominence, Subitizing, Prioritizing, Free-Viewing, and Searching. Extensive experiments demonstrate the effectiveness of our benchmark in providing a comprehensive evaluation of MLLMs. Specifically, we evaluate 13 MLLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. Our experiments reveal that HVSBench presents a new and significant challenge for cutting-edge MLLMs. We believe that HVSBench will facilitate research on human-aligned and explainable MLLMs, marking a key step in understanding how MLLMs perceive and process visual information.
Related papers
- EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents [57.4686961979566]
EmbodiedEval is a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks.
It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity.
We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks.
arXiv Detail & Related papers (2025-01-21T03:22:10Z) - OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
The standard practice for developing contemporary MLLMs is to feed features from vision encoder(s) into the LLM and train with natural language supervision.
We propose OLA-VLM, the first approach distilling knowledge into the LLM's hidden representations from a set of target visual representations.
We show that OLA-VLM boosts performance by an average margin of up to 2.5% on various benchmarks, with a notable improvement of 8.7% on the Depth task in CV-Bench.
arXiv Detail & Related papers (2024-12-12T18:55:18Z) - A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
This paper presents a comprehensive review of 200 benchmarks and evaluations for Multimodal Large Language Models (MLLMs)
We focus on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities.
Our key argument is that evaluation should be regarded as a crucial discipline to support the development of MLLMs better.
arXiv Detail & Related papers (2024-08-16T09:52:02Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
multimodal large language models (MLLMs) combine the inherent power of large language models (LLMs) with the renewed capabilities to reason about the multimodal context.
Many recent works in visualization have demonstrated MLLMs' capability to understand and interpret visualization results and explain the content of the visualization to users in natural language.
In this work, we aim to fill the gap by utilizing the concept of visualization literacy to evaluate MLLMs.
arXiv Detail & Related papers (2024-06-24T17:52:16Z) - LM4LV: A Frozen Large Language Model for Low-level Vision Tasks [25.3601306724822]
$textbfLM4LV$ is a framework that enables a large language model to solve a range of low-level vision tasks without any multi-modal data or prior.
This showcases the LLM's strong potential in low-level vision and bridges the gap between MLLMs and low-level vision tasks.
arXiv Detail & Related papers (2024-05-24T17:25:00Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
This paper introduces a novel benchmark, termed MLLM-as-a-Judge, to assess the ability of MLLMs in assisting judges across diverse modalities.
Our study reveals that, while MLLMs demonstrate remarkable human-like discernment in Pair Comparison, there is a significant divergence from human preferences in Scoring Evaluation and Batch Ranking.
arXiv Detail & Related papers (2024-02-07T12:28:32Z) - The Instinctive Bias: Spurious Images lead to Illusion in MLLMs [34.91795817316696]
We identify a typical class of inputs that baffles MLLMs, which consist of images that are highly relevant but inconsistent with answers.
We propose CorrelationQA, the first benchmark that assesses the visual illusion level given spurious images.
We conduct a thorough analysis on 9 mainstream MLLMs, illustrating that they universally suffer from this instinctive bias to varying degrees.
arXiv Detail & Related papers (2024-02-06T06:48:46Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
We investigate the effectiveness of different vision encoders within Large Language Models (MLLMs)
Our findings reveal that the shallow layer features of CLIP offer particular advantages for fine-grained tasks such as grounding and region understanding.
We propose a simple yet effective feature merging strategy, named COMM, that integrates CLIP and DINO with Multi-level features Merging.
arXiv Detail & Related papers (2023-10-13T02:41:55Z) - Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level
Vision [85.6008224440157]
Multi-modality Large Language Models (MLLMs) have catalyzed a shift in computer vision from specialized models to general-purpose foundation models.
We present Q-Bench, a holistic benchmark crafted to evaluate potential abilities of MLLMs on three realms: low-level visual perception, low-level visual description, and overall visual quality assessment.
arXiv Detail & Related papers (2023-09-25T14:43:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.