FreeScale: Unleashing the Resolution of Diffusion Models via Tuning-Free Scale Fusion
- URL: http://arxiv.org/abs/2412.09626v1
- Date: Thu, 12 Dec 2024 18:59:59 GMT
- Title: FreeScale: Unleashing the Resolution of Diffusion Models via Tuning-Free Scale Fusion
- Authors: Haonan Qiu, Shiwei Zhang, Yujie Wei, Ruihang Chu, Hangjie Yuan, Xiang Wang, Yingya Zhang, Ziwei Liu,
- Abstract summary: FreeScale is a tuning-free inference paradigm to enable higher-resolution visual generation via scale fusion.
We extend the capabilities of higher-resolution visual generation for both image and video models.
- Score: 50.43304425256732
- License:
- Abstract: Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. To tackle this challenge, we propose FreeScale, a tuning-free inference paradigm to enable higher-resolution visual generation via scale fusion. Specifically, FreeScale processes information from different receptive scales and then fuses it by extracting desired frequency components. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Notably, compared with the previous best-performing method, FreeScale unlocks the generation of 8k-resolution images for the first time.
Related papers
- DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance [11.44012694656102]
Large-scale generative models, such as text-to-image diffusion models, have garnered widespread attention across diverse domains.
Existing large-scale diffusion models are confined to generating images of up to 1K resolution.
We propose a novel progressive approach that fully utilizes generated low-resolution images to guide the generation of higher-resolution images.
arXiv Detail & Related papers (2024-06-26T16:10:31Z) - FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis [48.9652334528436]
We introduce an innovative, training-free approach FouriScale from the perspective of frequency domain analysis.
We replace the original convolutional layers in pre-trained diffusion models by incorporating a dilation technique along with a low-pass operation.
Our method successfully balances the structural integrity and fidelity of generated images, achieving an astonishing capacity of arbitrary-size, high-resolution, and high-quality generation.
arXiv Detail & Related papers (2024-03-19T17:59:33Z) - Make a Cheap Scaling: A Self-Cascade Diffusion Model for
Higher-Resolution Adaptation [112.08287900261898]
This paper proposes a novel self-cascade diffusion model for rapid adaptation to higher-resolution image and video generation.
Our approach achieves a 5X training speed-up and requires only an additional 0.002M tuning parameters.
Experiments demonstrate that our approach can quickly adapt to higher resolution image and video synthesis by fine-tuning for just 10k steps, with virtually no additional inference time.
arXiv Detail & Related papers (2024-02-16T07:48:35Z) - ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with
Diffusion Models [126.35334860896373]
We investigate the capability of generating images from pre-trained diffusion models at much higher resolutions than the training image sizes.
Existing works for higher-resolution generation, such as attention-based and joint-diffusion approaches, cannot well address these issues.
We propose a simple yet effective re-dilation that can dynamically adjust the convolutional perception field during inference.
arXiv Detail & Related papers (2023-10-11T17:52:39Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.