Investigating the Impact of Balancing, Filtering, and Complexity on Predictive Multiplicity: A Data-Centric Perspective
- URL: http://arxiv.org/abs/2412.09712v1
- Date: Thu, 12 Dec 2024 20:14:45 GMT
- Title: Investigating the Impact of Balancing, Filtering, and Complexity on Predictive Multiplicity: A Data-Centric Perspective
- Authors: Mustafa Cavus, Przemyslaw Biecek,
- Abstract summary: Rashomon effect occurs when multiple models achieve similar performance on a dataset but produce different predictions, resulting in predictive multiplicity.
Data-centric AI approaches can mitigate these problems by prioritizing data optimization, particularly through preprocessing techniques.
This paper investigates how data preprocessing techniques like balancing and filtering methods impact predictive multiplicity and model stability, considering the complexity of the data.
- Score: 5.524804393257921
- License:
- Abstract: The Rashomon effect presents a significant challenge in model selection. It occurs when multiple models achieve similar performance on a dataset but produce different predictions, resulting in predictive multiplicity. This is especially problematic in high-stakes environments, where arbitrary model outcomes can have serious consequences. Traditional model selection methods prioritize accuracy and fail to address this issue. Factors such as class imbalance and irrelevant variables further complicate the situation, making it harder for models to provide trustworthy predictions. Data-centric AI approaches can mitigate these problems by prioritizing data optimization, particularly through preprocessing techniques. However, recent studies suggest preprocessing methods may inadvertently inflate predictive multiplicity. This paper investigates how data preprocessing techniques like balancing and filtering methods impact predictive multiplicity and model stability, considering the complexity of the data. We conduct the experiments on 21 real-world datasets, applying various balancing and filtering techniques, and assess the level of predictive multiplicity introduced by these methods by leveraging the Rashomon effect. Additionally, we examine how filtering techniques reduce redundancy and enhance model generalization. The findings provide insights into the relationship between balancing methods, data complexity, and predictive multiplicity, demonstrating how data-centric AI strategies can improve model performance.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
We develop an influence functions framework to address these challenges.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - An Experimental Study on the Rashomon Effect of Balancing Methods in Imbalanced Classification [0.0]
This paper examines the impact of balancing methods on predictive multiplicity using the Rashomon effect.
It is crucial because the blind model selection in data-centric AI is risky from a set of approximately equally accurate models.
arXiv Detail & Related papers (2024-03-22T13:08:22Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Towards Accelerated Model Training via Bayesian Data Selection [45.62338106716745]
We propose a more reasonable data selection principle by examining the data's impact on the model's generalization loss.
Recent work has proposed a more reasonable data selection principle by examining the data's impact on the model's generalization loss.
This work solves these problems by leveraging a lightweight Bayesian treatment and incorporating off-the-shelf zero-shot predictors built on large-scale pre-trained models.
arXiv Detail & Related papers (2023-08-21T07:58:15Z) - The Effect of Balancing Methods on Model Behavior in Imbalanced
Classification Problems [4.370097023410272]
Imbalanced data poses a challenge in classification as model performance is affected by insufficient learning from minority classes.
This study addresses a more challenging aspect of balancing methods - their impact on model behavior.
To capture these changes, Explainable Artificial Intelligence tools are used to compare models trained on datasets before and after balancing.
arXiv Detail & Related papers (2023-06-30T22:25:01Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Model Compression for Dynamic Forecast Combination [9.281199058905017]
We show that compressing dynamic forecasting ensembles into an individual model leads to a comparable predictive performance.
We also show that the compressed individual model with best average rank is a rule-based regression model.
arXiv Detail & Related papers (2021-04-05T09:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.