Can Students Beyond The Teacher? Distilling Knowledge from Teacher's Bias
- URL: http://arxiv.org/abs/2412.09874v1
- Date: Fri, 13 Dec 2024 05:40:20 GMT
- Title: Can Students Beyond The Teacher? Distilling Knowledge from Teacher's Bias
- Authors: Jianhua Zhang, Yi Gao, Ruyu Liu, Xu Cheng, Houxiang Zhang, Shengyong Chen,
- Abstract summary: Knowledge distillation (KD) is a technique that transfers knowledge from a large teacher model to a smaller student model to enhance its performance.
Current KD frameworks transmit both right and wrong knowledge, bias that misleads the student model.
We propose a novel strategy to rectify bias and greatly improve the student model's performance.
- Score: 28.353042919961606
- License:
- Abstract: Knowledge distillation (KD) is a model compression technique that transfers knowledge from a large teacher model to a smaller student model to enhance its performance. Existing methods often assume that the student model is inherently inferior to the teacher model. However, we identify that the fundamental issue affecting student performance is the bias transferred by the teacher. Current KD frameworks transmit both right and wrong knowledge, introducing bias that misleads the student model. To address this issue, we propose a novel strategy to rectify bias and greatly improve the student model's performance. Our strategy involves three steps: First, we differentiate knowledge and design a bias elimination method to filter out biases, retaining only the right knowledge for the student model to learn. Next, we propose a bias rectification method to rectify the teacher model's wrong predictions, fundamentally addressing bias interference. The student model learns from both the right knowledge and the rectified biases, greatly improving its prediction accuracy. Additionally, we introduce a dynamic learning approach with a loss function that updates weights dynamically, allowing the student model to quickly learn right knowledge-based easy tasks initially and tackle hard tasks corresponding to biases later, greatly enhancing the student model's learning efficiency. To the best of our knowledge, this is the first strategy enabling the student model to surpass the teacher model. Experiments demonstrate that our strategy, as a plug-and-play module, is versatile across various mainstream KD frameworks. We will release our code after the paper is accepted.
Related papers
- Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - Periodically Exchange Teacher-Student for Source-Free Object Detection [7.222926042027062]
Source-free object detection (SFOD) aims to adapt the source detector to unlabeled target domain data in the absence of source domain data.
Most SFOD methods follow the same self-training paradigm using mean-teacher (MT) framework where the student model is guided by only one single teacher model.
We propose the Periodically Exchange Teacher-Student (PETS) method, a simple yet novel approach that introduces a multiple-teacher framework consisting of a static teacher, a dynamic teacher, and a student model.
arXiv Detail & Related papers (2023-11-23T11:30:54Z) - DriveAdapter: Breaking the Coupling Barrier of Perception and Planning
in End-to-End Autonomous Driving [64.57963116462757]
State-of-the-art methods usually follow the Teacher-Student' paradigm.
Student model only has access to raw sensor data and conducts behavior cloning on the data collected by the teacher model.
We propose DriveAdapter, which employs adapters with the feature alignment objective function between the student (perception) and teacher (planning) modules.
arXiv Detail & Related papers (2023-08-01T09:21:53Z) - Unbiased Knowledge Distillation for Recommendation [66.82575287129728]
Knowledge distillation (KD) has been applied in recommender systems (RS) to reduce inference latency.
Traditional solutions first train a full teacher model from the training data, and then transfer its knowledge to supervise the learning of a compact student model.
We find such a standard distillation paradigm would incur serious bias issue -- popular items are more heavily recommended after the distillation.
arXiv Detail & Related papers (2022-11-27T05:14:03Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
We propose the dynamic prior knowledge (DPK), which integrates part of teacher's features as the prior knowledge before the feature distillation.
Our DPK makes the performance of the student model positively correlated with that of the teacher model, which means that we can further boost the accuracy of students by applying larger teachers.
arXiv Detail & Related papers (2022-06-13T11:52:13Z) - Revisiting Knowledge Distillation: An Inheritance and Exploration
Framework [153.73692961660964]
Knowledge Distillation (KD) is a popular technique to transfer knowledge from a teacher model to a student model.
We propose a novel inheritance and exploration knowledge distillation framework (IE-KD)
Our IE-KD framework is generic and can be easily combined with existing distillation or mutual learning methods for training deep neural networks.
arXiv Detail & Related papers (2021-07-01T02:20:56Z) - Undistillable: Making A Nasty Teacher That CANNOT teach students [84.6111281091602]
This paper introduces and investigates a concept called Nasty Teacher: a specially trained teacher network that yields nearly the same performance as a normal one.
We propose a simple yet effective algorithm to build the nasty teacher, called self-undermining knowledge distillation.
arXiv Detail & Related papers (2021-05-16T08:41:30Z) - Role-Wise Data Augmentation for Knowledge Distillation [48.115719640111394]
Knowledge Distillation (KD) is a common method for transferring the knowledge'' learned by one machine learning model into another.
We design data augmentation agents with distinct roles to facilitate knowledge distillation.
We find empirically that specially tailored data points enable the teacher's knowledge to be demonstrated more effectively to the student.
arXiv Detail & Related papers (2020-04-19T14:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.