GraSP: Simple yet Effective Graph Similarity Predictions
- URL: http://arxiv.org/abs/2412.09968v1
- Date: Fri, 13 Dec 2024 08:55:02 GMT
- Title: GraSP: Simple yet Effective Graph Similarity Predictions
- Authors: Haoran Zheng, Jieming Shi, Renchi Yang,
- Abstract summary: Graph similarity computation (GSC) is to calculate the similarity between one pair of graphs.<n>GraSP is a simple yet effective GSC approach for GED and MCS prediction.
- Score: 5.67358865525237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph similarity computation (GSC) is to calculate the similarity between one pair of graphs, which is a fundamental problem with fruitful applications in the graph community. In GSC, graph edit distance (GED) and maximum common subgraph (MCS) are two important similarity metrics, both of which are NP-hard to compute. Instead of calculating the exact values, recent solutions resort to leveraging graph neural networks (GNNs) to learn data-driven models for the estimation of GED and MCS. Most of them are built on components involving node-level interactions crossing graphs, which engender vast computation overhead but are of little avail in effectiveness. In the paper, we present GraSP, a simple yet effective GSC approach for GED and MCS prediction. GraSP achieves high result efficacy through several key instruments: enhanced node features via positional encoding and a GNN model augmented by a gating mechanism, residual connections, as well as multi-scale pooling. Theoretically, GraSP can surpass the 1-WL test, indicating its high expressiveness. Empirically, extensive experiments comparing GraSP against 10 competitors on multiple widely adopted benchmark datasets showcase the superiority of GraSP over prior arts in terms of both effectiveness and efficiency. The code is available at https://github.com/HaoranZ99/GraSP.
Related papers
- GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning [20.54767504966887]
Graph contrastive learning (GCL) has become a hot topic in the field of graph representation learning.
We propose GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning.
arXiv Detail & Related papers (2024-12-18T09:20:12Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - What Can We Learn from State Space Models for Machine Learning on Graphs? [11.38076877943004]
We propose Graph State Space Convolution (GSSC) as a principled extension of State Space Models (SSMs) to graph-structured data.
By leveraging global permutation-equivariant set aggregation and factorizable graph kernels, GSSC preserves all three advantages of SSMs.
Our findings highlight the potential of GSSC as a powerful and scalable model for graph machine learning.
arXiv Detail & Related papers (2024-06-09T15:03:36Z) - EXGC: Bridging Efficiency and Explainability in Graph Condensation [30.60535282372542]
Graph condensation (GCond) has been introduced to distill large real datasets into a more concise yet information-rich synthetic graph.
Despite acceleration efforts, existing GCond methods mainly grapple with efficiency, especially on expansive web data graphs.
We propose the Efficient and eXplainable Graph Condensation method, which can markedly boost efficiency and inject explainability.
arXiv Detail & Related papers (2024-02-05T06:03:38Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked graph autoencoder (MGAE) framework to perform effective learning on graph structure data.
Taking insights from self-supervised learning, we randomly mask a large proportion of edges and try to reconstruct these missing edges during training.
arXiv Detail & Related papers (2022-01-07T16:48:07Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - CoSimGNN: Towards Large-scale Graph Similarity Computation [5.17905821006887]
Graph Neural Networks (GNNs) provide a data-driven solution for this task.
Existing GNN-based methods, which either respectively embeds two graphs or deploy cross-graph interactions for whole graph pairs, are still not able to achieve competitive results.
We propose the "embedding-coarsening-matching" framework CoSimGNN, which first embeds and coarsens large graphs with adaptive pooling operation and then deploys fine-grained interactions on the coarsened graphs for final similarity scores.
arXiv Detail & Related papers (2020-05-14T16:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.