Direct Encoding of Declare Constraints in ASP
- URL: http://arxiv.org/abs/2412.10152v1
- Date: Fri, 13 Dec 2024 14:11:33 GMT
- Title: Direct Encoding of Declare Constraints in ASP
- Authors: Francesco Chiariello, Valeria Fionda, Antonio Ielo, Francesco Ricca,
- Abstract summary: We introduce a novel encoding for Declare constraints that directly models their semantics as ASP rules.
We assess the effectiveness of this novel approach on two Process Mining tasks.
- Score: 9.599644507730106
- License:
- Abstract: Answer Set Programming (ASP), a well-known declarative logic programming paradigm, has recently found practical application in Process Mining. In particular, ASP has been used to model tasks involving declarative specifications of business processes. In this area, Declare stands out as the most widely adopted declarative process modeling language, offering a means to model processes through sets of constraints valid traces must satisfy, that can be expressed in Linear Temporal Logic over Finite Traces (LTLf). Existing ASP-based solutions encode Declare constraints by modeling the corresponding LTLf formula or its equivalent automaton which can be obtained using established techniques. In this paper, we introduce a novel encoding for Declare constraints that directly models their semantics as ASP rules, eliminating the need for intermediate representations. We assess the effectiveness of this novel approach on two Process Mining tasks by comparing it with alternative ASP encodings and a Python library for Declare. Under consideration in Theory and Practice of Logic Programming (TPLP).
Related papers
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context.
The typical autoregressive decoding method requires a separate forward pass through the model for each token generated.
We introduce ADED, which accelerates LLM decoding without requiring fine-tuning.
arXiv Detail & Related papers (2024-06-27T22:20:39Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers.
This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of large language models.
Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization.
arXiv Detail & Related papers (2024-02-10T11:14:53Z) - Automated legal reasoning with discretion to act using s(LAW) [0.294944680995069]
ethical and legal concerns make it necessary for automated reasoners to justify in human-understandable terms.
We propose to use s(CASP), a top-down execution model for predicate ASP, to model vague concepts following a set of patterns.
We have implemented a framework, called s(LAW), to model, reason, and justify the applicable legislation and validate it by translating (and benchmarking) a representative use case.
arXiv Detail & Related papers (2024-01-25T21:11:08Z) - Natural Language Processing for Requirements Formalization: How to
Derive New Approaches? [0.32885740436059047]
We present and discuss principal ideas and state-of-the-art methodologies from the field of NLP.
We discuss two different approaches in detail and highlight the iterative development of rule sets.
The presented methods are demonstrated on two industrial use cases from the automotive and railway domains.
arXiv Detail & Related papers (2023-09-23T05:45:19Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - Procedures as Programs: Hierarchical Control of Situated Agents through
Natural Language [81.73820295186727]
We propose a formalism of procedures as programs, a powerful yet intuitive method of representing hierarchical procedural knowledge for agent command and control.
We instantiate this framework on the IQA and ALFRED datasets for NL instruction following.
arXiv Detail & Related papers (2021-09-16T20:36:21Z) - How could Neural Networks understand Programs? [67.4217527949013]
It is difficult to build a model to better understand programs, by either directly applying off-the-shelf NLP pre-training techniques to the source code, or adding features to the model by theshelf.
We propose a novel program semantics learning paradigm, that the model should learn from information composed of (1) the representations which align well with the fundamental operations in operational semantics, and (2) the information of environment transition.
arXiv Detail & Related papers (2021-05-10T12:21:42Z) - A Machine Learning guided Rewriting Approach for ASP Logic Programs [0.0]
We describe an approach based on Machine Learning (ML) to automatically decide whether to rewrite.
In particular, given an ASP program and a set of input facts, our approach chooses whether and how to rewrite input rules based on a set of features measuring their structural properties and domain information.
arXiv Detail & Related papers (2020-09-22T00:51:13Z) - ASP(AC): Answer Set Programming with Algebraic Constraints [20.559497209595822]
We introduce Answer Set Programming with Algebraic Constraints (ASP(AC)), where rules may contain constraints that compare semiring values to weighted formula evaluations.
This work is under consideration for acceptance in Theory and Practice of Logic Programming.
arXiv Detail & Related papers (2020-08-10T10:20:49Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.