Efficient Generative Modeling with Residual Vector Quantization-Based Tokens
- URL: http://arxiv.org/abs/2412.10208v2
- Date: Mon, 16 Dec 2024 04:51:01 GMT
- Title: Efficient Generative Modeling with Residual Vector Quantization-Based Tokens
- Authors: Jaehyeon Kim, Taehong Moon, Keon Lee, Jaewoong Cho,
- Abstract summary: ResGen is an efficient RVQ-based discrete diffusion model that generates high-fidelity samples without compromising sampling speed.
We validate the efficacy and generalizability of the proposed method on two challenging tasks: conditional image generation on ImageNet 256x256 and zero-shot text-to-speech synthesis.
As we scale the depth of RVQ, our generative models exhibit enhanced generation fidelity or faster sampling speeds compared to similarly sized baseline models.
- Score: 5.949779668853557
- License:
- Abstract: We explore the use of Residual Vector Quantization (RVQ) for high-fidelity generation in vector-quantized generative models. This quantization technique maintains higher data fidelity by employing more in-depth tokens. However, increasing the token number in generative models leads to slower inference speeds. To this end, we introduce ResGen, an efficient RVQ-based discrete diffusion model that generates high-fidelity samples without compromising sampling speed. Our key idea is a direct prediction of vector embedding of collective tokens rather than individual ones. Moreover, we demonstrate that our proposed token masking and multi-token prediction method can be formulated within a principled probabilistic framework using a discrete diffusion process and variational inference. We validate the efficacy and generalizability of the proposed method on two challenging tasks across different modalities: conditional image generation} on ImageNet 256x256 and zero-shot text-to-speech synthesis. Experimental results demonstrate that ResGen outperforms autoregressive counterparts in both tasks, delivering superior performance without compromising sampling speed. Furthermore, as we scale the depth of RVQ, our generative models exhibit enhanced generation fidelity or faster sampling speeds compared to similarly sized baseline models. The project page can be found at https://resgen-genai.github.io
Related papers
- Parallelized Autoregressive Visual Generation [65.9579525736345]
We propose a simple yet effective approach for parallelized autoregressive visual generation.
Our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks.
arXiv Detail & Related papers (2024-12-19T17:59:54Z) - Faster Language Models with Better Multi-Token Prediction Using Tensor Decomposition [5.575078692353885]
We propose a new model for multi-token prediction in transformers, aiming to enhance sampling efficiency without compromising accuracy.
By generalizing it to a rank-$r$ canonical probability decomposition, we develop an improved model that predicts multiple tokens simultaneously.
arXiv Detail & Related papers (2024-10-23T11:06:36Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding.
LANTERN increases speed-ups by $mathbf1.75times$ and $mathbf1.82times$, as compared to greedy decoding and random sampling.
arXiv Detail & Related papers (2024-10-04T12:21:03Z) - Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding [60.188309982690335]
We propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation.
By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding.
arXiv Detail & Related papers (2024-10-02T16:05:27Z) - Dynamic-Width Speculative Beam Decoding for Efficient LLM Inference [35.730941605490194]
Large language models (LLMs) have shown outstanding performance across numerous real-world tasks.
Speculative decoding has emerged as a promising solution, leveraging a smaller auxiliary model to draft future tokens.
This paper explores the novel integration of speculative decoding with beam sampling.
arXiv Detail & Related papers (2024-09-25T02:20:42Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
We focus on Generative Masked Language Models (GMLMs)
We train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model.
We adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality.
arXiv Detail & Related papers (2024-07-22T18:00:00Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data.
In this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples.
arXiv Detail & Related papers (2024-01-11T16:43:16Z) - Variational Bayes image restoration with compressive autoencoders [4.879530644978008]
Regularization of inverse problems is of paramount importance in computational imaging.
In this work, we first propose to use compressive autoencoders instead of state-of-the-art generative models.
As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm.
arXiv Detail & Related papers (2023-11-29T15:49:31Z) - Latent Autoregressive Source Separation [5.871054749661012]
This paper introduces vector-quantized Latent Autoregressive Source Separation (i.e., de-mixing an input signal into its constituent sources) without requiring additional gradient-based optimization or modifications of existing models.
Our separation method relies on the Bayesian formulation in which the autoregressive models are the priors, and a discrete (non-parametric) likelihood function is constructed by performing frequency counts over latent sums of addend tokens.
arXiv Detail & Related papers (2023-01-09T17:32:00Z) - Paraformer: Fast and Accurate Parallel Transformer for
Non-autoregressive End-to-End Speech Recognition [62.83832841523525]
We propose a fast and accurate parallel transformer, termed Paraformer.
It accurately predicts the number of output tokens and extract hidden variables.
It can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.
arXiv Detail & Related papers (2022-06-16T17:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.