The Reliability Issue in ReRam-based CIM Architecture for SNN: A Survey
- URL: http://arxiv.org/abs/2412.10389v1
- Date: Sat, 30 Nov 2024 16:03:24 GMT
- Title: The Reliability Issue in ReRam-based CIM Architecture for SNN: A Survey
- Authors: Wei-Ting Chen,
- Abstract summary: Spiking Neural Networks (SNNs) offer a promising alternative by mimicking biological neural networks, enabling energy-efficient computation.
ReRAM and Compute-in-Memory (CIM) architectures aim to overcome the Von Neumann bottleneck by integrating storage and computation.
This survey explores the intersection of SNNs and ReRAM-based CIM architectures, focusing on the reliability challenges that arise from device-level variations and operational errors.
- Score: 11.935228413907875
- License:
- Abstract: The increasing complexity and energy demands of deep learning models have highlighted the limitations of traditional computing architectures, especially for edge devices with constrained resources. Spiking Neural Networks (SNNs) offer a promising alternative by mimicking biological neural networks, enabling energy-efficient computation through event-driven processing and temporal encoding. Concurrently, emerging hardware technologies like Resistive Random Access Memory (ReRAM) and Compute-in-Memory (CIM) architectures aim to overcome the Von Neumann bottleneck by integrating storage and computation. This survey explores the intersection of SNNs and ReRAM-based CIM architectures, focusing on the reliability challenges that arise from device-level variations and operational errors. We review the fundamental principles of SNNs and ReRAM crossbar arrays, discuss the inherent reliability issues in both technologies, and summarize existing solutions to mitigate these challenges.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - NeuSpin: Design of a Reliable Edge Neuromorphic System Based on
Spintronics for Green AI [0.22499166814992438]
Internet of Things (IoT) and smart wearable devices for personalized healthcare will require storing and computing ever-increasing amounts of data.
The key requirements for these devices are ultra-low-power, high-processing capabilities, autonomy at low cost, as well as reliability and accuracy to enable Green AI at the edge.
The NeuSPIN project aims to address these challenges through full-stack hardware and software co-design, developing novel algorithmic and circuit design approaches to enhance the performance, energy-efficiency and robustness of BayNNs on sprint-based CIM platforms.
arXiv Detail & Related papers (2024-01-11T13:27:19Z) - Pursing the Sparse Limitation of Spiking Deep Learning Structures [42.334835610250714]
Spiking Neural Networks (SNNs) are garnering increased attention for their superior computation and energy efficiency.
We introduce an innovative algorithm capable of simultaneously identifying both weight and patch-level winning tickets.
We demonstrate that our spiking lottery ticket achieves comparable or superior performance even when the model structure is extremely sparse.
arXiv Detail & Related papers (2023-11-18T17:00:40Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
The shift towards ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
In this survey, we review the state-of-the-art ReRAM-based Deep Neural Networks (DNNs) many-core accelerators.
arXiv Detail & Related papers (2021-09-08T21:11:48Z) - Online Training of Spiking Recurrent Neural Networks with Phase-Change
Memory Synapses [1.9809266426888898]
Training spiking neural networks (RNNs) on dedicated neuromorphic hardware is still an open challenge.
We present a simulation framework of differential-architecture arrays based on an accurate and comprehensive Phase-Change Memory (PCM) device model.
We train a spiking RNN whose weights are emulated in the presented simulation framework, using a recently proposed e-prop learning rule.
arXiv Detail & Related papers (2021-08-04T01:24:17Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - HCM: Hardware-Aware Complexity Metric for Neural Network Architectures [6.556553154231475]
This paper introduces a hardware-aware complexity metric that aims to assist the system designer of the neural network architectures.
We demonstrate how the proposed metric can help evaluate different design alternatives of neural network models on resource-restricted devices.
arXiv Detail & Related papers (2020-04-19T16:42:51Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.