Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective
- URL: http://arxiv.org/abs/2412.10390v1
- Date: Sat, 30 Nov 2024 18:54:08 GMT
- Title: Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective
- Authors: Lihui Liu, Zihao Wang, Hanghang Tong,
- Abstract summary: Knowledge graph reasoning is pivotal in various domains such as data mining, artificial intelligence, the Web, and social sciences.
The rise of Neural AI marks a significant advancement, merging the robustness of deep learning with the precision of symbolic reasoning.
The advent of large language models (LLMs) has opened new frontiers in knowledge graph reasoning.
- Score: 55.79507207292647
- License:
- Abstract: Knowledge graph reasoning is pivotal in various domains such as data mining, artificial intelligence, the Web, and social sciences. These knowledge graphs function as comprehensive repositories of human knowledge, facilitating the inference of new information. Traditional symbolic reasoning, despite its strengths, struggles with the challenges posed by incomplete and noisy data within these graphs. In contrast, the rise of Neural Symbolic AI marks a significant advancement, merging the robustness of deep learning with the precision of symbolic reasoning. This integration aims to develop AI systems that are not only highly interpretable and explainable but also versatile, effectively bridging the gap between symbolic and neural methodologies. Additionally, the advent of large language models (LLMs) has opened new frontiers in knowledge graph reasoning, enabling the extraction and synthesis of knowledge in unprecedented ways. This survey offers a thorough review of knowledge graph reasoning, focusing on various query types and the classification of neural symbolic reasoning. Furthermore, it explores the innovative integration of knowledge graph reasoning with large language models, highlighting the potential for groundbreaking advancements. This comprehensive overview is designed to support researchers and practitioners across multiple fields, including data mining, AI, the Web, and social sciences, by providing a detailed understanding of the current landscape and future directions in knowledge graph reasoning.
Related papers
- A short Survey: Exploring knowledge graph-based neural-symbolic system from application perspective [0.0]
achieving human-like reasoning and interpretability in AI systems remains a substantial challenge.
The Neural-Symbolic paradigm, which integrates neural networks with symbolic systems, presents a promising pathway toward more interpretable AI.
This paper explores recent advancements in neural-symbolic integration based on Knowledge Graphs.
arXiv Detail & Related papers (2024-05-06T14:40:50Z) - Knowledge Graph Extension by Entity Type Recognition [2.8231106019727195]
We propose a novel knowledge graph extension framework based on entity type recognition.
The framework aims to achieve high-quality knowledge extraction by aligning the schemas and entities across different knowledge graphs.
arXiv Detail & Related papers (2024-05-03T19:55:03Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neural, Symbolic and Neural-Symbolic Reasoning on Knowledge Graphs [9.708996828407384]
Knowledge graph reasoning supports machine learning applications such as information extraction, information retrieval, and recommendation.
Since knowledge graphs can be viewed as the discrete symbolic representations of knowledge, reasoning on knowledge graphs can naturally leverage the symbolic techniques.
Recent advances of deep learning promote neural reasoning on knowledge graphs, which is robust to the ambiguous and noisy data, but lacks interpretability compared to symbolic reasoning.
arXiv Detail & Related papers (2020-10-12T04:28:57Z) - Neural-Symbolic Relational Reasoning on Graph Models: Effective Link
Inference and Computation from Knowledge Bases [0.5669790037378094]
We propose a neural-symbolic graph which applies learning over all the paths by feeding the model with the embedding of the minimal network of the knowledge graph containing such paths.
By learning to produce representations for entities and facts corresponding to word embeddings, we show how the model can be trained end-to-end to decode these representations and infer relations between entities in a relational approach.
arXiv Detail & Related papers (2020-05-05T22:46:39Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z) - A Survey on Knowledge Graphs: Representation, Acquisition and
Applications [89.78089494738002]
We review research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications.
For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed.
We explore several emerging topics, including meta learning, commonsense reasoning, and temporal knowledge graphs.
arXiv Detail & Related papers (2020-02-02T13:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.