Computational Methods for Breast Cancer Molecular Profiling through Routine Histopathology: A Review
- URL: http://arxiv.org/abs/2412.10392v1
- Date: Sun, 01 Dec 2024 08:13:49 GMT
- Title: Computational Methods for Breast Cancer Molecular Profiling through Routine Histopathology: A Review
- Authors: Suchithra Kunhoth, Somaya Al- Maadeed, Younes Akbari, Rafif Al Saady,
- Abstract summary: Recent advancements in artificial intelligence have enabled digital pathology to analyze histopathologic images for targeted molecular and broader omic biomarkers.
These technologies offer the capability to extract various biomarkers such as genomic, transcriptomic, proteomic, and metabolomic markers directly from the routine hematoxylin and eosin stained images.
- Score: 0.2671776059280352
- License:
- Abstract: Precision medicine has become a central focus in breast cancer management, advancing beyond conventional methods to deliver more precise and individualized therapies. Traditionally, histopathology images have been used primarily for diagnostic purposes; however, they are now recognized for their potential in molecular profiling, which provides deeper insights into cancer prognosis and treatment response. Recent advancements in artificial intelligence (AI) have enabled digital pathology to analyze histopathologic images for both targeted molecular and broader omic biomarkers, marking a pivotal step in personalized cancer care. These technologies offer the capability to extract various biomarkers such as genomic, transcriptomic, proteomic, and metabolomic markers directly from the routine hematoxylin and eosin (H&E) stained images, which can support treatment decisions without the need for costly molecular assays. In this work, we provide a comprehensive review of AI-driven techniques for biomarker detection, with a focus on diverse omic biomarkers that allow novel biomarker discovery. Additionally, we analyze the major challenges faced in this field for robust algorithm development. These challenges highlight areas where further research is essential to bridge the gap between AI research and clinical application.
Related papers
- AI in Oncology: Transforming Cancer Detection through Machine Learning and Deep Learning Applications [0.3937575566991286]
This review examines the limitations of conventional diagnostic techniques and explores the transformative role of AI in diagnosing and treating cancers.
The study delves into the application of AI in radiomics for detailed cancer characterization, predictive analytics for identifying associated risks, and the development of algorithm-driven robots for immediate diagnosis.
The overarching goal of this platform is to support the development of expert recommendations and to provide universal, efficient diagnostic procedures.
arXiv Detail & Related papers (2025-01-26T11:32:43Z) - Screen Them All: High-Throughput Pan-Cancer Genetic and Phenotypic Biomarker Screening from H&E Whole Slide Images [3.119559770601732]
Using AI on routine H&E slides offers a fast and economical approach to screen for multiple molecular biomarkers.
We present a high- throughput AI-based system leveraging Virchow2, a foundation model pre-trained on 3 million slides.
Unlike traditional methods that train individual models for each biomarker or cancer type, our system employs a unified model to simultaneously predict a wide range of clinically relevant molecular biomarkers.
arXiv Detail & Related papers (2024-08-18T17:44:00Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
The NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients.
We propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression.
arXiv Detail & Related papers (2023-04-26T16:47:42Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Deep Learning-Based Prediction of Molecular Tumor Biomarkers from H&E: A
Practical Review [0.0]
Molecular and genomic properties are critical in selecting cancer treatments to target individual tumors.
Applying machine learning to H&E images can provide a more cost-effective screening method.
This article reviews the diverse applications across cancer types and the methodology to train and validate these models.
arXiv Detail & Related papers (2022-11-27T14:57:41Z) - Advances of Artificial Intelligence in Classical and Novel
Spectroscopy-Based Approaches for Cancer Diagnostics. A Review [0.0]
This review covers the advances of artificial intelligence applications in well-established techniques such as MRI and CT.
It shows its high potential in combination with optical spectroscopy-based approaches that are under development for mobile, ultra-fast, and low-invasive diagnostics.
I will show how spectroscopy-based approaches can reduce the time of tissue preparation for pathological analysis by making thin-slicing or haematoxylin-and-eosin staining obsolete.
arXiv Detail & Related papers (2022-08-08T09:39:36Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.