COEF-VQ: Cost-Efficient Video Quality Understanding through a Cascaded Multimodal LLM Framework
- URL: http://arxiv.org/abs/2412.10435v1
- Date: Wed, 11 Dec 2024 08:10:32 GMT
- Title: COEF-VQ: Cost-Efficient Video Quality Understanding through a Cascaded Multimodal LLM Framework
- Authors: Xin Dong, Sen Jia, Hongyu Xiong,
- Abstract summary: We propose COEF-VQ, a novel cascaded MLLM framework for better video quality understanding on TikTok.
To demonstrate the effectiveness of COEF-VQ, we deployed this new framework onto the video management platform (VMP) at TikTok.
We show that COEF-VQ leads to substantial performance gains with limit resource consumption in these two tasks.
- Score: 11.512418684814026
- License:
- Abstract: Recently, with the emergence of recent Multimodal Large Language Model (MLLM) technology, it has become possible to exploit its video understanding capability on different classification tasks. In practice, we face the difficulty of huge requirements for GPU resource if we need to deploy MLLMs online. In this paper, we propose COEF-VQ, a novel cascaded MLLM framework for better video quality understanding on TikTok. To this end, we first propose a MLLM fusing all visual, textual and audio signals, and then develop a cascade framework with a lightweight model as pre-filtering stage and MLLM as fine-consideration stage, significantly reducing the need for GPU resource, while retaining the performance demonstrated solely by MLLM. To demonstrate the effectiveness of COEF-VQ, we deployed this new framework onto the video management platform (VMP) at TikTok, and performed a series of detailed experiments on two in-house tasks related to video quality understanding. We show that COEF-VQ leads to substantial performance gains with limit resource consumption in these two tasks.
Related papers
- InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.
We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.
Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
We propose a training-free adaptive inference method for multi-modal LLMs.
With a minimalist design, our method can be applied to both video and image LLMs.
Under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding.
arXiv Detail & Related papers (2024-12-04T11:47:57Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - Inf-MLLM: Efficient Streaming Inference of Multimodal Large Language Models on a Single GPU [14.719538667881311]
Inf-MLLM is an efficient inference framework for Multimodal Large Language Models (MLLMs)
We show that Inf-MLLM enables multiple LLMs and MLLMs to achieve stable performance over 4M-token long texts and multi-round conversations with 1-hour-long videos on a single GPU.
arXiv Detail & Related papers (2024-09-11T12:44:12Z) - TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations [23.188508465235717]
We propose two strategies to enhance the model's capability in video understanding tasks.
The first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE.
The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask.
arXiv Detail & Related papers (2024-09-05T02:54:17Z) - Dense Connector for MLLMs [89.50595155217108]
We introduce the Dense Connector - a plug-and-play vision-language connector that significantly enhances existing MLLMs.
Building on this, we also propose the Efficient Dense Connector, which achieves performance comparable to LLaVA-v1.5 with only 25% of the visual tokens.
Our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well.
arXiv Detail & Related papers (2024-05-22T16:25:03Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - MVBench: A Comprehensive Multi-modal Video Understanding Benchmark [63.14000659130736]
We introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench.
We first introduce a novel static-to-dynamic method to define these temporal-related tasks.
Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task.
arXiv Detail & Related papers (2023-11-28T17:59:04Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - VideoLLM: Modeling Video Sequence with Large Language Models [70.32832021713864]
Existing video understanding models are often task-specific and lack a comprehensive capability of handling diverse tasks.
We propose a novel framework called VideoLLM that leverages the sequence reasoning capabilities of pre-trained LLMs.
VideoLLM incorporates a carefully designed Modality and Semantic Translator, which convert inputs from various modalities into a unified token sequence.
arXiv Detail & Related papers (2023-05-22T17:51:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.