SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion
- URL: http://arxiv.org/abs/2412.10437v1
- Date: Wed, 11 Dec 2024 09:02:25 GMT
- Title: SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion
- Authors: Ximing Xing, Juncheng Hu, Jing Zhang, Dong Xu, Qian Yu,
- Abstract summary: SVGFusion is a Text-to-SVG model capable of scaling to real-world SVG data.
It learns a continuous latent space for vector graphics with a popular Text-to-Image framework.
It achieves enhanced quality and generalizability, thereby establishing a novel SVG content creation.
- Score: 32.01103570298614
- License:
- Abstract: The generation of Scalable Vector Graphics (SVG) assets from textual data remains a significant challenge, largely due to the scarcity of high-quality vector datasets and the limitations in scalable vector representations required for modeling intricate graphic distributions. This work introduces SVGFusion, a Text-to-SVG model capable of scaling to real-world SVG data without reliance on a text-based discrete language model or prolonged SDS optimization. The essence of SVGFusion is to learn a continuous latent space for vector graphics with a popular Text-to-Image framework. Specifically, SVGFusion consists of two modules: a Vector-Pixel Fusion Variational Autoencoder (VP-VAE) and a Vector Space Diffusion Transformer (VS-DiT). VP-VAE takes both the SVGs and corresponding rasterizations as inputs and learns a continuous latent space, whereas VS-DiT learns to generate a latent code within this space based on the text prompt. Based on VP-VAE, a novel rendering sequence modeling strategy is proposed to enable the latent space to embed the knowledge of construction logics in SVGs. This empowers the model to achieve human-like design capabilities in vector graphics, while systematically preventing occlusion in complex graphic compositions. Moreover, our SVGFusion's ability can be continuously improved by leveraging the scalability of the VS-DiT by adding more VS-DiT blocks. A large-scale SVG dataset is collected to evaluate the effectiveness of our proposed method. Extensive experimentation has confirmed the superiority of our SVGFusion over existing SVG generation methods, achieving enhanced quality and generalizability, thereby establishing a novel framework for SVG content creation. Code, model, and data will be released at: \href{https://ximinng.github.io/SVGFusionProject/}{https://ximinng.github.io/SVGFusionProject/}
Related papers
- NeuralSVG: An Implicit Representation for Text-to-Vector Generation [54.4153300455889]
We propose NeuralSVG, an implicit neural representation for generating vector graphics from text prompts.
To encourage a layered structure in the generated SVG, we introduce a dropout-based regularization technique.
We demonstrate that NeuralSVG outperforms existing methods in generating structured and flexible SVG.
arXiv Detail & Related papers (2025-01-07T18:50:06Z) - SVGBuilder: Component-Based Colored SVG Generation with Text-Guided Autoregressive Transformers [5.921625661186367]
This paper introduces a component-based, autoregressive model for generating high-quality colored SVGs from textual input.
It significantly reduces computational overhead and improves efficiency compared to traditional methods.
To address the limitations of existing SVG datasets and support our research, we introduce ColorSVG-100K, the first large-scale dataset of colored SVGs.
arXiv Detail & Related papers (2024-12-13T15:24:11Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVG is a superpixel-based vectorization model that achieves fast and high-precision image vectorization.
We propose a two-stage self-training framework, where a coarse-stage model is employed to reconstruct the main structure and a refinement-stage model is used for enriching the details.
Experiments demonstrate the superior performance of our method in terms of reconstruction accuracy and inference time compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-06-14T07:43:23Z) - SVGDreamer: Text Guided SVG Generation with Diffusion Model [31.76771064173087]
We propose a novel text-guided vector graphics synthesis method called SVGDreamer.
SIVE process enables decomposition of synthesis into foreground objects and background.
VPSD approach addresses issues of shape over-smoothing, color over-saturation, limited diversity, and slow convergence.
arXiv Detail & Related papers (2023-12-27T08:50:01Z) - StarVector: Generating Scalable Vector Graphics Code from Images and Text [15.32194071443065]
We introduce Star, a multimodal large language model for SVG generation.
It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs.
We train StarStack, a diverse dataset of 2M samples that enables generalization across vectorization tasks.
arXiv Detail & Related papers (2023-12-17T08:07:32Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
We show that a text-conditioned diffusion model trained on pixel representations of images can be used to generate SVG-exportable vector graphics.
Inspired by recent text-to-3D work, we learn an SVG consistent with a caption using Score Distillation Sampling.
Experiments show greater quality than prior work, and demonstrate a range of styles including pixel art and sketches.
arXiv Detail & Related papers (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
We propose Layerwise Image Vectorization, namely LIVE, to convert images to SVGs and simultaneously maintain its image topology.
Live generates compact forms with layer-wise structures that are semantically consistent with human perspective.
Live initiates human editable SVGs for both designers and can be used in other applications.
arXiv Detail & Related papers (2022-06-09T17:55:02Z) - SVG-Net: An SVG-based Trajectory Prediction Model [67.68864911674308]
Anticipating motions of vehicles in a scene is an essential problem for safe autonomous driving systems.
To this end, the comprehension of the scene's infrastructure is often the main clue for predicting future trajectories.
Most of the proposed approaches represent the scene with averse averseized format and some of the more recent approaches leverage custom vectorized formats.
arXiv Detail & Related papers (2021-10-07T18:00:08Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
We propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and manipulation.
Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself.
We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool.
arXiv Detail & Related papers (2020-07-22T09:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.