Regional Weather Variable Predictions by Machine Learning with Near-Surface Observational and Atmospheric Numerical Data
- URL: http://arxiv.org/abs/2412.10450v2
- Date: Mon, 10 Feb 2025 22:39:17 GMT
- Title: Regional Weather Variable Predictions by Machine Learning with Near-Surface Observational and Atmospheric Numerical Data
- Authors: Yihe Zhang, Bryce Turney, Purushottam Sigdel, Xu Yuan, Eric Rappin, Adrian Lago, Sytske Kimball, Li Chen, Paul Darby, Lu Peng, Sercan Aygun, Yazhou Tu, M. Hassan Najafi, Nian-Feng Tzeng,
- Abstract summary: This paper presents a novel machine learning (ML) model, called MiMa (short for Micro-Macro), that integrates both near-surface observational data from Kentucky Mesonet stations.<n>MiMa significantly outperforms current models, with Re-MiMa offering precise short-term forecasts for ungauged locations.
- Score: 22.54998659323974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and timely regional weather prediction is vital for sectors dependent on weather-related decisions. Traditional prediction methods, based on atmospheric equations, often struggle with coarse temporal resolutions and inaccuracies. This paper presents a novel machine learning (ML) model, called MiMa (short for Micro-Macro), that integrates both near-surface observational data from Kentucky Mesonet stations (collected every five minutes, known as Micro data) and hourly atmospheric numerical outputs (termed as Macro data) for fine-resolution weather forecasting. The MiMa model employs an encoder-decoder transformer structure, with two encoders for processing multivariate data from both datasets and a decoder for forecasting weather variables over short time horizons. Each instance of the MiMa model, called a modelet, predicts the values of a specific weather parameter at an individual Mesonet station. The approach is extended with Re-MiMa modelets, which are designed to predict weather variables at ungauged locations by training on multivariate data from a few representative stations in a region, tagged with their elevations. Re-MiMa (short for Regional-MiMa) can provide highly accurate predictions across an entire region, even in areas without observational stations. Experimental results show that MiMa significantly outperforms current models, with Re-MiMa offering precise short-term forecasts for ungauged locations, marking a significant advancement in weather forecasting accuracy and applicability.
Related papers
- UNet with Axial Transformer : A Neural Weather Model for Precipitation Nowcasting [0.06906005491572399]
We develop a novel method that employs Transformer-based machine learning models to forecast precipitation.
This paper represents an initial research on the dataset used in the domain of next frame prediciton.
arXiv Detail & Related papers (2025-04-28T01:20:30Z) - WeatherFormer: A Pretrained Encoder Model for Learning Robust Weather Representations from Small Datasets [0.5735035463793009]
WeatherFormer is a transformer encoder-based model designed to learn robust weather features from minimal observations.
WeatherFormer was pretrained on a large pretraining dataset comprised of 39 years of satellite measurements across the Americas.
arXiv Detail & Related papers (2024-05-22T17:43:46Z) - CaFA: Global Weather Forecasting with Factorized Attention on Sphere [7.687215328455751]
We propose a factorized-attention-based model tailored for spherical geometries to mitigate this issue.
The deterministic forecasting accuracy of the proposed model on $1.5circ$ and 0-7 days' lead time is on par with state-of-the-art purely data-driven machine learning weather prediction models.
arXiv Detail & Related papers (2024-05-12T23:18:14Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh [3.2785715577154595]
We present a parsimonious deep learning weather prediction model to forecast seven atmospheric variables with 3-h time resolution for up to one-year lead times on a 110-km global mesh.
In comparison to state-of-the-art (SOTA) machine learning (ML) weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables.
arXiv Detail & Related papers (2023-09-11T16:25:48Z) - Interpolation of mountain weather forecasts by machine learning [0.0]
This paper proposes a method that uses machine learning to interpolate future weather in mountainous regions.
We focus on mountainous regions in Japan and predict temperature and precipitation mainly using LightGBM as a machine learning model.
arXiv Detail & Related papers (2023-08-27T01:32:23Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - W-MAE: Pre-trained weather model with masked autoencoder for
multi-variable weather forecasting [7.610811907813171]
We propose a Weather model with Masked AutoEncoder pre-training for weather forecasting.
W-MAE is pre-trained in a self-supervised manner to reconstruct spatial correlations within meteorological variables.
On the temporal scale, we fine-tune the pre-trained W-MAE to predict the future states of meteorological variables.
arXiv Detail & Related papers (2023-04-18T06:25:11Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.