Unbiased General Annotated Dataset Generation
- URL: http://arxiv.org/abs/2412.10831v1
- Date: Sat, 14 Dec 2024 13:28:40 GMT
- Title: Unbiased General Annotated Dataset Generation
- Authors: Dengyang Jiang, Haoyu Wang, Lei Zhang, Wei Wei, Guang Dai, Mengmeng Wang, Jingdong Wang, Yanning Zhang,
- Abstract summary: We present an unbiased general annotated dataset generation framework (ubGen)
We propose to leverage the advantage of a multimodal foundation model (e.g., CLIP) in terms of aligning images in an unbiased semantic space defined by language.
Experimental results confirm that, compared with the manually labeled dataset or other synthetic datasets, the utilization of our generated unbiased datasets leads to stable generalization capacity enhancement.
- Score: 62.04202037186855
- License:
- Abstract: Pre-training backbone networks on a general annotated dataset (e.g., ImageNet) that comprises numerous manually collected images with category annotations has proven to be indispensable for enhancing the generalization capacity of downstream visual tasks. However, those manually collected images often exhibit bias, which is non-transferable across either categories or domains, thus causing the model's generalization capacity degeneration. To mitigate this problem, we present an unbiased general annotated dataset generation framework (ubGen). Instead of expensive manual collection, we aim at directly generating unbiased images with category annotations. To achieve this goal, we propose to leverage the advantage of a multimodal foundation model (e.g., CLIP), in terms of aligning images in an unbiased semantic space defined by language. Specifically, we develop a bi-level semantic alignment loss, which not only forces all generated images to be consistent with the semantic distribution of all categories belonging to the target dataset in an adversarial learning manner, but also requires each generated image to match the semantic description of its category name. In addition, we further cast an existing image quality scoring model into a quality assurance loss to preserve the quality of the generated image. By leveraging these two loss functions, we can obtain an unbiased image generation model by simply fine-tuning a pre-trained diffusion model using only all category names in the target dataset as input. Experimental results confirm that, compared with the manually labeled dataset or other synthetic datasets, the utilization of our generated unbiased datasets leads to stable generalization capacity enhancement of different backbone networks across various tasks, especially in tasks where the manually labeled samples are scarce.
Related papers
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Adapt Anything: Tailor Any Image Classifiers across Domains And
Categories Using Text-to-Image Diffusion Models [82.95591765009105]
We aim to study if a modern text-to-image diffusion model can tailor any task-adaptive image classifier across domains and categories.
We utilize only one off-the-shelf text-to-image model to synthesize images with category labels derived from the corresponding text prompts.
arXiv Detail & Related papers (2023-10-25T11:58:14Z) - ASPIRE: Language-Guided Data Augmentation for Improving Robustness Against Spurious Correlations [43.323791505213634]
ASPIRE (Language-guided Data Augmentation for SPurIous correlation REmoval) is a solution for supplementing the training dataset with images without spurious features.
It can generate non-spurious images without requiring any group labeling or existing non-spurious images in the training set.
It improves the worst-group classification accuracy of prior methods by 1% - 38%.
arXiv Detail & Related papers (2023-08-19T20:18:15Z) - Wavelet-based Unsupervised Label-to-Image Translation [9.339522647331334]
We propose a new Unsupervised paradigm for SIS (USIS) that makes use of a self-supervised segmentation loss and whole image wavelet based discrimination.
We test our methodology on 3 challenging datasets and demonstrate its ability to bridge the performance gap between paired and unpaired models.
arXiv Detail & Related papers (2023-05-16T17:48:44Z) - Prefix Conditioning Unifies Language and Label Supervision [84.11127588805138]
We show that dataset biases negatively affect pre-training by reducing the generalizability of learned representations.
In experiments, we show that this simple technique improves the performance in zero-shot image recognition accuracy and robustness to the image-level distribution shift.
arXiv Detail & Related papers (2022-06-02T16:12:26Z) - Multi-dataset Pretraining: A Unified Model for Semantic Segmentation [97.61605021985062]
We propose a unified framework, termed as Multi-Dataset Pretraining, to take full advantage of the fragmented annotations of different datasets.
This is achieved by first pretraining the network via the proposed pixel-to-prototype contrastive loss over multiple datasets.
In order to better model the relationship among images and classes from different datasets, we extend the pixel level embeddings via cross dataset mixing.
arXiv Detail & Related papers (2021-06-08T06:13:11Z) - Reconciliation of Statistical and Spatial Sparsity For Robust Image and
Image-Set Classification [27.319334479994787]
We propose a novel Joint Statistical and Spatial Sparse representation, dubbed textitJ3S, to model the image or image-set data for classification.
We propose to solve the joint sparse coding problem based on the J3S model, by coupling the local and global image representations using joint sparsity.
Experiments show that the proposed J3S-based image classification scheme outperforms the popular or state-of-the-art competing methods over FMD, UIUC, ETH-80 and YTC databases.
arXiv Detail & Related papers (2021-06-01T06:33:24Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.