A Diagrammatic Approach to Improve Computational Efficiency in Group Equivariant Neural Networks
- URL: http://arxiv.org/abs/2412.10837v1
- Date: Sat, 14 Dec 2024 14:08:06 GMT
- Title: A Diagrammatic Approach to Improve Computational Efficiency in Group Equivariant Neural Networks
- Authors: Edward Pearce-Crump, William J. Knottenbelt,
- Abstract summary: Group equivariant neural networks are growing in importance owing to their ability to generalise well in applications where the data has known underlying symmetries.
Recent characterisations of a class of these networks that use high-order tensor power spaces as their layers suggest that they have significant potential.
We present a fast matrix multiplication algorithm for any equivariant weight matrix that maps between tensor power layer spaces in these networks for four groups.
- Score: 1.9643748953805935
- License:
- Abstract: Group equivariant neural networks are growing in importance owing to their ability to generalise well in applications where the data has known underlying symmetries. Recent characterisations of a class of these networks that use high-order tensor power spaces as their layers suggest that they have significant potential; however, their implementation remains challenging owing to the prohibitively expensive nature of the computations that are involved. In this work, we present a fast matrix multiplication algorithm for any equivariant weight matrix that maps between tensor power layer spaces in these networks for four groups: the symmetric, orthogonal, special orthogonal, and symplectic groups. We obtain this algorithm by developing a diagrammatic framework based on category theory that enables us to not only express each weight matrix as a linear combination of diagrams but also makes it possible for us to use these diagrams to factor the original computation into a series of steps that are optimal. We show that this algorithm improves the Big-$O$ time complexity exponentially in comparison to a na\"{i}ve matrix multiplication.
Related papers
- Learning Symmetries via Weight-Sharing with Doubly Stochastic Tensors [46.59269589647962]
Group equivariance has emerged as a valuable inductive bias in deep learning.
Group equivariant methods require the groups of interest to be known beforehand.
We show that when the dataset exhibits strong symmetries, the permutation matrices will converge to regular group representations.
arXiv Detail & Related papers (2024-12-05T20:15:34Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Connecting Permutation Equivariant Neural Networks and Partition Diagrams [0.0]
We show that all of the weight matrices that appear in Permutation equivariant neural networks can be obtained from Schur-Weyl duality.
In particular, we adapt Schur-Weyl duality to derive a simple, diagrammatic method for calculating the weight matrices themselves.
arXiv Detail & Related papers (2022-12-16T18:48:54Z) - Equivariant neural networks for recovery of Hadamard matrices [0.7742297876120561]
We propose a message passing neural network architecture designed to be equivariant to column and row permutations of a matrix.
We illustrate its advantages over traditional architectures like multi-layer perceptrons (MLPs), convolutional neural networks (CNNs) and even Transformers.
arXiv Detail & Related papers (2022-01-31T12:07:07Z) - Quantum-inspired event reconstruction with Tensor Networks: Matrix
Product States [0.0]
We show that Networks are ideal vehicles to connect quantum mechanical concepts to machine learning techniques.
We show that entanglement entropy can be used to interpret what a network learns.
arXiv Detail & Related papers (2021-06-15T18:00:02Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Controllable Orthogonalization in Training DNNs [96.1365404059924]
Orthogonality is widely used for training deep neural networks (DNNs) due to its ability to maintain all singular values of the Jacobian close to 1.
This paper proposes a computationally efficient and numerically stable orthogonalization method using Newton's iteration (ONI)
We show that our method improves the performance of image classification networks by effectively controlling the orthogonality to provide an optimal tradeoff between optimization benefits and representational capacity reduction.
We also show that ONI stabilizes the training of generative adversarial networks (GANs) by maintaining the Lipschitz continuity of a network, similar to spectral normalization (
arXiv Detail & Related papers (2020-04-02T10:14:27Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.