CRENER: A Character Relation Enhanced Chinese NER Model
- URL: http://arxiv.org/abs/2412.10858v1
- Date: Sat, 14 Dec 2024 15:14:39 GMT
- Title: CRENER: A Character Relation Enhanced Chinese NER Model
- Authors: Yaqiong Qiao, Shixuan Peng,
- Abstract summary: We propose a character relation enhanced Chinese NER model (CRENER)
This model defines four types of tags that reflect the relationships between characters.
Experiments conducted on four well-known Chinese NER benchmark datasets have shown that the proposed model outperforms state-of-the-art baselines.
- Score: 0.0
- License:
- Abstract: Chinese Named Entity Recognition (NER) is an important task in information extraction, which has a significant impact on downstream applications. Due to the lack of natural separators in Chinese, previous NER methods mostly relied on external dictionaries to enrich the semantic and boundary information of Chinese words. However, such methods may introduce noise that affects the accuracy of named entity recognition. To this end, we propose a character relation enhanced Chinese NER model (CRENER). This model defines four types of tags that reflect the relationships between characters, and proposes a fine-grained modeling of the relationships between characters based on three types of relationships: adjacency relations between characters, relations between characters and tags, and relations between tags, to more accurately identify entity boundaries and improve Chinese NER accuracy. Specifically, we transform the Chinese NER task into a character-character relationship classification task, ensuring the accuracy of entity boundary recognition through joint modeling of relation tags. To enhance the model's ability to understand contextual information, WRENER further constructed an adapted transformer encoder that combines unscaled direction-aware and distance-aware masked self-attention mechanisms. Moreover, a relationship representation enhancement module was constructed to model predefined relationship tags, effectively mining the relationship representations between characters and tags. Experiments conducted on four well-known Chinese NER benchmark datasets have shown that the proposed model outperforms state-of-the-art baselines. The ablation experiment also demonstrated the effectiveness of the proposed model.
Related papers
- Entity-Aware Self-Attention and Contextualized GCN for Enhanced Relation Extraction in Long Sentences [5.453850739960517]
We propose a novel model, Entity-aware Self-attention Contextualized GCN (ESC-GCN), which efficiently incorporates syntactic structure of input sentences and semantic context of sequences.
Our model achieves encouraging performance as compared to existing dependency-based and sequence-based models.
arXiv Detail & Related papers (2024-09-15T10:50:51Z) - Relation Rectification in Diffusion Model [64.84686527988809]
We introduce a novel task termed Relation Rectification, aiming to refine the model to accurately represent a given relationship it initially fails to generate.
We propose an innovative solution utilizing a Heterogeneous Graph Convolutional Network (HGCN)
The lightweight HGCN adjusts the text embeddings generated by the text encoder, ensuring the accurate reflection of the textual relation in the embedding space.
arXiv Detail & Related papers (2024-03-29T15:54:36Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view
Contrastive Learning [54.523172171533645]
Cross-lingual named entity recognition (CrossNER) faces challenges stemming from uneven performance due to the scarcity of multilingual corpora.
We propose Multi-view Contrastive Learning for Cross-lingual Named Entity Recognition (mCL-NER)
Our experiments on the XTREME benchmark, spanning 40 languages, demonstrate the superiority of mCL-NER over prior data-driven and model-based approaches.
arXiv Detail & Related papers (2023-08-17T16:02:29Z) - Chinese Financial Text Emotion Mining: GCGTS -- A Character
Relationship-based Approach for Simultaneous Aspect-Opinion Pair Extraction [7.484918031250864]
Aspect-Opinion Pair Extraction (AOPE) from Chinese financial texts is a specialized task in fine-grained text sentiment analysis.
Previous studies have mainly focused on developing grid annotation schemes within grid-based models to facilitate this extraction process.
We propose a novel method called Graph-based Character-level Grid Tagging Scheme (GCGTS)
The GCGTS method explicitly incorporates syntactic structure using Graph Convolutional Networks (GCN) and unifies the encoding of characters within the same semantic unit (Chinese word level)
arXiv Detail & Related papers (2023-08-04T02:20:56Z) - Multi-task Transformer with Relation-attention and Type-attention for
Named Entity Recognition [35.44123819012004]
Named entity recognition (NER) is an important research problem in natural language processing.
This paper proposes a multi-task Transformer, which incorporates an entity boundary detection task into the named entity recognition task.
arXiv Detail & Related papers (2023-03-20T05:11:22Z) - WCL-BBCD: A Contrastive Learning and Knowledge Graph Approach to Named
Entity Recognition [15.446770390648874]
We propose a novel named entity recognition model WCL-BBCD (Word Contrastive Learning with BERT-BiLSTM-CRF-DBpedia)
The model first trains the sentence pairs in the text, calculate similarity between words in sentence pairs by cosine similarity, and fine-tunes the BERT model used for the named entity recognition task through the similarity.
Finally, the recognition results are corrected in combination with prior knowledge such as knowledge graphs, so as to alleviate the recognition caused by word abbreviations low-rate problem.
arXiv Detail & Related papers (2022-03-14T08:29:58Z) - Transformer-based Dual Relation Graph for Multi-label Image Recognition [56.12543717723385]
We propose a novel Transformer-based Dual Relation learning framework.
We explore two aspects of correlation, i.e., structural relation graph and semantic relation graph.
Our approach achieves new state-of-the-art on two popular multi-label recognition benchmarks.
arXiv Detail & Related papers (2021-10-10T07:14:52Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
This paper aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data.
We learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations.
Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art relational models.
arXiv Detail & Related papers (2021-03-22T08:11:43Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
We present two approaches to narrative text understanding for character relationship modelling.
The temporal evolution of these relations is described by dynamic word embeddings, that are designed to learn semantic changes over time.
A supervised learning approach based on the state-of-the-art transformer model BERT is used instead to detect static relations between characters.
arXiv Detail & Related papers (2020-03-19T14:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.