A Novel End-To-End Event Geolocation Method Leveraging Hyperbolic Space and Toponym Hierarchies
- URL: http://arxiv.org/abs/2412.10870v1
- Date: Sat, 14 Dec 2024 15:43:58 GMT
- Title: A Novel End-To-End Event Geolocation Method Leveraging Hyperbolic Space and Toponym Hierarchies
- Authors: Yaqiong Qiao, Guojun Huang,
- Abstract summary: Timely detection and geolocation of events based on social data can provide critical information for applications such as crisis response and resource allocation.
This paper proposes a novel end-to-end event geolocation method (GTOP) leveraging Hyperbolic space and toponym hierarchies.
- Score: 0.0
- License:
- Abstract: Timely detection and geolocation of events based on social data can provide critical information for applications such as crisis response and resource allocation. However, most existing methods are greatly affected by event detection errors, leading to insufficient geolocation accuracy. To this end, this paper proposes a novel end-to-end event geolocation method (GTOP) leveraging Hyperbolic space and toponym hierarchies. Specifically, the proposed method contains one event detection module and one geolocation module. The event detection module constructs a heterogeneous information networks based on social data, and then constructs a homogeneous message graph and combines it with the text and time feature of the message to learning initial features of nodes. Node features are updated in Hyperbolic space and then fed into a classifier for event detection. To reduce the geolocation error, this paper proposes a noise toponym filtering algorithm (HIST) based on the hierarchical structure of toponyms. HIST analyzes the hierarchical structure of toponyms mentioned in the event cluster, taking the highly frequent city-level locations as the coarse-grained locations for events. By comparing the hierarchical structure of the toponyms within the cluster against those of the coarse-grained locations of events, HIST filters out noisy toponyms. To further improve the geolocation accuracy, we propose a fine-grained pseudo toponyms generation algorithm (FIT) based on the output of HIST, and combine generated pseudo toponyms with filtered toponyms to locate events based on the geographic center points of the combined toponyms. Extensive experiments are conducted on the Chinese dataset constructed in this paper and another public English dataset. The experimental results show that the proposed method is superior to the state-of-the-art baselines.
Related papers
- HMCGeo: IP Region Prediction Based on Hierarchical Multi-label Classification [9.993613732452122]
Fine-grained IP geolocation plays a critical role in applications such as location-based services and cybersecurity.
This paper proposes a novel hierarchical multi-label classification framework for IP region prediction, named HMCGeo.
We show that HMCGeo achieves superior performance across all geographical granularities, significantly outperforming existing IP geolocation methods.
arXiv Detail & Related papers (2025-01-26T08:58:14Z) - Coupled Laplacian Eigenmaps for Locally-Aware 3D Rigid Point Cloud Matching [0.0]
We propose a new technique, based on graph Laplacian eigenmaps, to match point clouds by taking into account fine local structures.
To deal with the order and sign ambiguity of Laplacian eigenmaps, we introduce a new operator, called Coupled Laplacian.
We show that the similarity between those aligned high-dimensional spaces provides a locally meaningful score to match shapes.
arXiv Detail & Related papers (2024-02-27T10:10:12Z) - CPR++: Object Localization via Single Coarse Point Supervision [55.8671776333499]
coarse point refinement (CPR) is first attempt to alleviate semantic variance from an algorithmic perspective.
CPR reduces semantic variance by selecting a semantic centre point in a neighbourhood region to replace the initial annotated point.
CPR++ can obtain scale information and further reduce the semantic variance in a global region.
arXiv Detail & Related papers (2024-01-30T17:38:48Z) - SpatialRank: Urban Event Ranking with NDCG Optimization on
Spatiotemporal Data [55.609946936979036]
We propose a novel spatial event ranking approach named SpatialRank.
We show that SpatialRank can effectively identify the top riskiest locations of crimes and traffic accidents.
arXiv Detail & Related papers (2023-09-30T06:20:21Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - Constructing Indoor Region-based Radio Map without Location Labels [18.34037687586167]
This paper develops a region-based radio map from received signal strength ( RSS) measurements without location labels.
The construction is based on a set of blindly collected RSS measurement data from a device that visits each region in an indoor area exactly once.
The proposed scheme reduces the region localization error by roughly 50% compared to a weighted centroid localization (WCL) baseline.
arXiv Detail & Related papers (2023-08-31T14:27:36Z) - Region Prediction for Efficient Robot Localization on Large Maps [5.75614168271028]
We propose a novel approach to pre-select a subset of map nodes for place recognition.
The region labels become the prediction targets of a deep neural network and, during navigation, only the nodes associated with the regions predicted with high probability are considered for matching.
arXiv Detail & Related papers (2023-03-01T07:42:48Z) - Surface Reconstruction from Point Clouds by Learning Predictive Context
Priors [68.12457459590921]
Surface reconstruction from point clouds is vital for 3D computer vision.
We introduce Predictive Context Priors by learning Predictive Queries for each specific point cloud at inference time.
Our experimental results in surface reconstruction for single shapes or complex scenes show significant improvements over the state-of-the-art under widely used benchmarks.
arXiv Detail & Related papers (2022-04-23T08:11:33Z) - Viewpoint Invariant Dense Matching for Visual Geolocalization [15.8038460597256]
We propose a novel method for image matching based on dense local features and tailored for visual geolocalization.
Our method, called GeoWarp, directly embeds invariance to viewpoint shifts in the process of extracting dense features.
GeoWarp is implemented efficiently as a re-ranking method that can be easily embedded into pre-existing visual geolocalization pipelines.
arXiv Detail & Related papers (2021-09-20T20:17:38Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.