Video Representation Learning with Joint-Embedding Predictive Architectures
- URL: http://arxiv.org/abs/2412.10925v1
- Date: Sat, 14 Dec 2024 18:33:29 GMT
- Title: Video Representation Learning with Joint-Embedding Predictive Architectures
- Authors: Katrina Drozdov, Ravid Shwartz-Ziv, Yann LeCun,
- Abstract summary: We present Video JEPA with Variance-Covariance Regularization (VJ-VCR): a joint-embedding predictive architecture for self-supervised video representation learning.
We show that hidden representations from our VJ-VCR contain abstract, high-level information about the input data.
- Score: 23.250749688875196
- License:
- Abstract: Video representation learning is an increasingly important topic in machine learning research. We present Video JEPA with Variance-Covariance Regularization (VJ-VCR): a joint-embedding predictive architecture for self-supervised video representation learning that employs variance and covariance regularization to avoid representation collapse. We show that hidden representations from our VJ-VCR contain abstract, high-level information about the input data. Specifically, they outperform representations obtained from a generative baseline on downstream tasks that require understanding of the underlying dynamics of moving objects in the videos. Additionally, we explore different ways to incorporate latent variables into the VJ-VCR framework that capture information about uncertainty in the future in non-deterministic settings.
Related papers
- Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases [69.46487306858789]
Conditional Autoregressive Slot Attention (CA-SA) is a framework that enhances the temporal consistency of extracted object-centric representations in video-centric vision tasks.
We present qualitative and quantitative results showing that our proposed method outperforms the considered baselines on downstream tasks.
arXiv Detail & Related papers (2024-10-21T07:44:44Z) - Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation [72.90144343056227]
We explore the visual representations produced from a pre-trained text-to-video (T2V) diffusion model for video understanding tasks.
We introduce a novel framework, termed "VD-IT", tailored with dedicatedly designed components built upon a fixed T2V model.
Our VD-IT achieves highly competitive results, surpassing many existing state-of-the-art methods.
arXiv Detail & Related papers (2024-03-18T17:59:58Z) - Conditional Modeling Based Automatic Video Summarization [70.96973928590958]
The aim of video summarization is to shorten videos automatically while retaining the key information necessary to convey the overall story.
Video summarization methods rely on visual factors, such as visual consecutiveness and diversity, which may not be sufficient to fully understand the content of the video.
A new approach to video summarization is proposed based on insights gained from how humans create ground truth video summaries.
arXiv Detail & Related papers (2023-11-20T20:24:45Z) - Self-Supervised Video Representation Learning via Latent Time Navigation [12.721647696921865]
Self-supervised video representation learning aims at maximizing similarity between different temporal segments of one video.
We propose Latent Time Navigation (LTN) to capture fine-grained motions.
Our experimental analysis suggests that learning video representations by LTN consistently improves performance of action classification.
arXiv Detail & Related papers (2023-05-10T20:06:17Z) - Self-Supervised Video Representation Learning with Motion-Contrastive
Perception [13.860736711747284]
Motion-Contrastive Perception Network (MCPNet)
MCPNet consists of two branches, namely, Motion Information Perception (MIP) and Contrastive Instance Perception (CIP)
Our method outperforms current state-of-the-art visual-only self-supervised approaches.
arXiv Detail & Related papers (2022-04-10T05:34:46Z) - Composable Augmentation Encoding for Video Representation Learning [94.2358972764708]
We focus on contrastive methods for self-supervised video representation learning.
A common paradigm in contrastive learning is to construct positive pairs by sampling different data views for the same instance, with different data instances as negatives.
We propose an 'augmentation aware' contrastive learning framework, where we explicitly provide a sequence of augmentation parameterisations.
We show that our method encodes valuable information about specified spatial or temporal augmentation, and in doing so also achieve state-of-the-art performance on a number of video benchmarks.
arXiv Detail & Related papers (2021-04-01T16:48:53Z) - Contrastive Transformation for Self-supervised Correspondence Learning [120.62547360463923]
We study the self-supervised learning of visual correspondence using unlabeled videos in the wild.
Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation.
Our framework outperforms the recent self-supervised correspondence methods on a range of visual tasks.
arXiv Detail & Related papers (2020-12-09T14:05:06Z) - Memory-augmented Dense Predictive Coding for Video Representation
Learning [103.69904379356413]
We propose a new architecture and learning framework Memory-augmented Predictive Coding (MemDPC) for the task.
We investigate visual-only self-supervised video representation learning from RGB frames, or from unsupervised optical flow, or both.
In all cases, we demonstrate state-of-the-art or comparable performance over other approaches with orders of magnitude fewer training data.
arXiv Detail & Related papers (2020-08-03T17:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.