Detection states of ions in a Paul trap via conventional and quantum machine learning algorithms
- URL: http://arxiv.org/abs/2412.10934v1
- Date: Sat, 14 Dec 2024 19:04:30 GMT
- Title: Detection states of ions in a Paul trap via conventional and quantum machine learning algorithms
- Authors: Ilia Khomchenko, Andrei Fionov, Artem Alekseev, Daniil Volkov, Ilya A. Semerikov, Nikolay N. Kolachevsky, Aleksey K. Fedorov,
- Abstract summary: Trapped ions are among the leading platforms for quantum technologies.
We develop and benchmark a set of methods for ion quantum state detection using images obtained by a highly sensitive camera.
- Score: 0.2692359362045324
- License:
- Abstract: Trapped ions are among the leading platforms for quantum technologies, particularly in the field of quantum computing. Detecting states of trapped ions is essential for ensuring high-fidelity readouts of quantum states. In this work, we develop and benchmark a set of methods for ion quantum state detection using images obtained by a highly sensitive camera. By transforming the images from the camera and applying conventional and quantum machine learning methods, including convolution, support vector machine (classical and quantum), and quantum annealing, we demonstrate a possibility to detect the positions and quantum states of ytterbium ions in a Paul trap. Quantum state detection is performed with an electron shelving technique: depending on the quantum state of the ion its fluorescence under the influence of a 369.5 nm laser beam is either suppressed or not. We estimate fidelities for conventional and quantum detection techniques. In particular, conventional algorithms for detecting $^{171}$Yb$^{+}$, such as the support vector machine and photon statistics-based method,as well as our quantum annealing-based approach, have achieved perfect fidelity, which is beneficial compared to standard techniques. This result may pave the way for ultrahigh-fidelity detection of trapped ions via conventional and quantum machine learning techniques.
Related papers
- Simulating optically-active spin defects with a quantum computer [3.3011710036065325]
We develop fault-tolerant quantum algorithms to simulate optically active defect states and their radiative emission rates.
We conclude by offering a forward-looking perspective on the potential of quantum computers to enhance quantum sensor capabilities.
arXiv Detail & Related papers (2024-05-21T18:00:02Z) - Tensor Network Based Efficient Quantum Data Loading of Images [0.0]
We present a novel method for creating quantum states that approximately encode images as amplitudes.
We experimentally demonstrate our technique on 8 qubits of a trapped ion quantum computer for complex images of road scenes.
arXiv Detail & Related papers (2023-10-09T17:40:41Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Deterministic Free-Propagating Photonic Qubits with Negative Wigner
Functions [0.0]
Coherent states ubiquitous in classical and quantum communications, squeezed states used in quantum sensing, and even highly-entangled states studied in the context of quantum computing can be produced deterministically.
We describe the first fully deterministic preparation of non-Gaussian Wigner-negative states of light, obtained by mapping the internal state of an intracavdberg superatom onto an optical qubit.
arXiv Detail & Related papers (2022-09-05T16:37:42Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum entanglement recognition [0.0]
We formulate a framework for probing entanglement based on machine learning techniques.
We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error.
arXiv Detail & Related papers (2020-07-28T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.