The geometry of simplicial distributions on suspension scenarios
- URL: http://arxiv.org/abs/2412.10963v1
- Date: Sat, 14 Dec 2024 20:47:53 GMT
- Title: The geometry of simplicial distributions on suspension scenarios
- Authors: Aziz Kharoof,
- Abstract summary: The geometrical structure of simplicial distributions can be seen as a resource for applications in quantum information theory.
We show that applying the cone construction to the measurement space makes the corresponding non-signaling polytope equal to the join of $m$ copies of the original polytope.
The decomposition done for simplicial distributions on a cone measurement space provides deeper insights into the geometry of simplicial distributions on a suspension measurement space.
- Score: 0.0
- License:
- Abstract: Quantum measurements often exhibit non-classical features, such as contextuality, which generalizes Bell's non-locality and serves as a resource in various quantum computation models. Existing frameworks have rigorously captured these phenomena, and recently, simplicial distributions have been introduced to deepen this understanding. The geometrical structure of simplicial distributions can be seen as a resource for applications in quantum information theory. In this work, we use topological foundations to study this geometrical structure, leveraging the fact that, in this simplicial framework, measurements and outcomes are represented as spaces. This allows us to depict contextuality as a topological phenomenon. We show that applying the cone construction to the measurement space makes the corresponding non-signaling polytope equal to the join of $m$ copies of the original polytope, where $m$ is the number of possible outcomes per measurement. Then we glue two copies of cone measurement spaces to obtain a suspension measurement space. The decomposition done for simplicial distributions on a cone measurement space provides deeper insights into the geometry of simplicial distributions on a suspension measurement space and aids in characterizing the contextuality there. Additionally, we apply these results to derive a new type of Bell inequalities (inequalities that determine the set of local joint probabilities/non-contextual simplicial distributions) and to offer a mathematical explanation for certain contextual vertices from the literature.
Related papers
- Geometric monotones of violations of quantum realism [89.99666725996975]
Quantum realism states that projective measurements in quantum systems establish the reality of physical properties, even in the absence of a revealed outcome.
This framework provides a nuanced perspective on the distinction between classical and quantum notions of realism, emphasizing the contextuality and complementarity inherent to quantum systems.
We derive geometric monotones of quantum realism using trace distance, Hilbert-Schmidt distance, Schatten $p$-distances, Bures, and Hellinger distances.
arXiv Detail & Related papers (2024-12-16T10:22:28Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Homotopical characterization of strongly contextual simplicial
distributions on cone spaces [0.0]
This paper offers a novel homotopical characterization of strongly contextual simplicial distributions with binary outcomes.
We employ a homotopical approach that includes collapsing measurement spaces and introduce categories associated with simplicial distributions that can detect strong contextuality.
arXiv Detail & Related papers (2023-11-23T17:14:24Z) - Topological methods for studying contextuality: $N$-cycle scenarios and
beyond [0.0]
Simplicial distributions are models describing distributions on spaces of measurements and outcomes that generalize on contextuality scenarios.
This paper studies simplicial distributions on $2$-dimensional measurement spaces by introducing new topological methods.
arXiv Detail & Related papers (2023-06-02T11:36:31Z) - Simplicial distributions, convex categories and contextuality [0.0]
Simplicial distributions are models that extend presheaves of probability distributions by elevating sets of measurements and outcomes to spaces.
This paper introduces the notion of convex categories to study simplicial distributions from a categorical perspective.
We show that a simplicial distribution is noncontextual if and only if it is weakly invertible.
arXiv Detail & Related papers (2022-11-01T16:33:54Z) - Simplicial quantum contextuality [0.0]
We introduce a new framework for contextuality based on simplicial sets, models of topological spaces that play a prominent role in homotopy theory.
Our approach extends measurement scenarios to consist of spaces (rather than sets) of measurements and outcomes.
We present a topologically inspired new proof of Fine's theorem for characterizing noncontextuality in Bell scenarios.
arXiv Detail & Related papers (2022-04-13T22:03:28Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
Deep Neural Networks are widely used for solving complex problems in several scientific areas, such as speech recognition, machine translation, image analysis.
We study a particular sequence of maps between manifold, with the last manifold of the sequence equipped with a Riemannian metric.
We investigate the theoretical properties of the maps of such sequence, eventually we focus on the case of maps between implementing neural networks of practical interest.
arXiv Detail & Related papers (2021-12-17T11:43:30Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z) - Geometry of Similarity Comparisons [51.552779977889045]
We show that the ordinal capacity of a space form is related to its dimension and the sign of its curvature.
More importantly, we show that the statistical behavior of the ordinal spread random variables defined on a similarity graph can be used to identify its underlying space form.
arXiv Detail & Related papers (2020-06-17T13:37:42Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.