RapidNet: Multi-Level Dilated Convolution Based Mobile Backbone
- URL: http://arxiv.org/abs/2412.10995v1
- Date: Sat, 14 Dec 2024 23:39:03 GMT
- Title: RapidNet: Multi-Level Dilated Convolution Based Mobile Backbone
- Authors: Mustafa Munir, Md Mostafijur Rahman, Radu Marculescu,
- Abstract summary: We propose Multi-Level Dilated Convolutions to devise a purely CNN-based mobile backbone.
Experiments show that our proposed model outperforms state-of-the-art (SOTA) mobile CNN, ViT, ViG, and hybrid architectures in terms of accuracy and/or speed on image classification, object detection, instance segmentation, and semantic segmentation.
- Score: 6.4399181389092
- License:
- Abstract: Vision transformers (ViTs) have dominated computer vision in recent years. However, ViTs are computationally expensive and not well suited for mobile devices; this led to the prevalence of convolutional neural network (CNN) and ViT-based hybrid models for mobile vision applications. Recently, Vision GNN (ViG) and CNN hybrid models have also been proposed for mobile vision tasks. However, all of these methods remain slower compared to pure CNN-based models. In this work, we propose Multi-Level Dilated Convolutions to devise a purely CNN-based mobile backbone. Using Multi-Level Dilated Convolutions allows for a larger theoretical receptive field than standard convolutions. Different levels of dilation also allow for interactions between the short-range and long-range features in an image. Experiments show that our proposed model outperforms state-of-the-art (SOTA) mobile CNN, ViT, ViG, and hybrid architectures in terms of accuracy and/or speed on image classification, object detection, instance segmentation, and semantic segmentation. Our fastest model, RapidNet-Ti, achieves 76.3\% top-1 accuracy on ImageNet-1K with 0.9 ms inference latency on an iPhone 13 mini NPU, which is faster and more accurate than MobileNetV2x1.4 (74.7\% top-1 with 1.0 ms latency). Our work shows that pure CNN architectures can beat SOTA hybrid and ViT models in terms of accuracy and speed when designed properly.
Related papers
- OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
We reexamine the design distinctions and test the limits of what a sparse CNN can achieve.
We propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap.
This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module.
arXiv Detail & Related papers (2024-03-21T14:06:38Z) - RepViT: Revisiting Mobile CNN From ViT Perspective [67.05569159984691]
lightweight Vision Transformers (ViTs) demonstrate superior performance and lower latency, compared with lightweight Convolutional Neural Networks (CNNs)
In this study, we revisit the efficient design of lightweight CNNs from ViT perspective and emphasize their promising prospect for mobile devices.
arXiv Detail & Related papers (2023-07-18T14:24:33Z) - MobileViG: Graph-Based Sparse Attention for Mobile Vision Applications [7.2210216531805695]
Vision graph neural networks (ViGs) provide a new avenue for exploration.
ViGs are computationally expensive due to the overhead of representing images as graph structures.
We propose a new graph-based sparse attention mechanism, Sparse Vision Graph Attention (SVGA), that is designed for ViGs running on mobile devices.
arXiv Detail & Related papers (2023-07-01T17:49:12Z) - Rethinking Vision Transformers for MobileNet Size and Speed [58.01406896628446]
We propose a novel supernet with low latency and high parameter efficiency.
We also introduce a novel fine-grained joint search strategy for transformer models.
This work demonstrate that properly designed and optimized vision transformers can achieve high performance even with MobileNet-level size and speed.
arXiv Detail & Related papers (2022-12-15T18:59:12Z) - InternImage: Exploring Large-Scale Vision Foundation Models with
Deformable Convolutions [95.94629864981091]
This work presents a new large-scale CNN-based foundation model, termed InternImage, which can obtain the gain from increasing parameters and training data like ViTs.
The proposed InternImage reduces the strict inductive bias of traditional CNNs and makes it possible to learn stronger and more robust patterns with large-scale parameters from massive data like ViTs.
arXiv Detail & Related papers (2022-11-10T18:59:04Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z) - MobileOne: An Improved One millisecond Mobile Backbone [14.041480018494394]
We analyze different metrics by deploying several mobile-friendly networks on a mobile device.
We design an efficient backbone MobileOne, with variants achieving an inference time under 1 ms on an iPhone12.
We show that MobileOne achieves state-of-the-art performance within the efficient architectures while being many times faster on mobile.
arXiv Detail & Related papers (2022-06-08T17:55:11Z) - EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision
Transformers [88.52500757894119]
Self-attention based vision transformers (ViTs) have emerged as a very competitive architecture alternative to convolutional neural networks (CNNs) in computer vision.
We introduce EdgeViTs, a new family of light-weight ViTs that, for the first time, enable attention-based vision models to compete with the best light-weight CNNs.
arXiv Detail & Related papers (2022-05-06T18:17:19Z) - MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision
Transformer [24.47196590256829]
We introduce MobileViT, a light-weight vision transformer for mobile devices.
Our results show that MobileViT significantly outperforms CNN- and ViT-based networks across different tasks and datasets.
arXiv Detail & Related papers (2021-10-05T17:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.