Entropy-Regularized Process Reward Model
- URL: http://arxiv.org/abs/2412.11006v1
- Date: Sun, 15 Dec 2024 01:09:23 GMT
- Title: Entropy-Regularized Process Reward Model
- Authors: Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong Lin, Rui Pan, Hanze Dong, Dylan Zhang, Pavlo Molchanov, Tong Zhang,
- Abstract summary: Large language models (LLMs) have shown promise in performing complex multi-step reasoning, yet they continue to struggle with mathematical reasoning.
We propose an entropy-regularized process reward model (ER-PRM) that integrates KL-regularized Markov Decision Processes (MDP)
Our empirical experiments on the MATH and GSM8K benchmarks demonstrate that ER-PRM consistently outperforms existing process reward models.
- Score: 30.279394036823092
- License:
- Abstract: Large language models (LLMs) have shown promise in performing complex multi-step reasoning, yet they continue to struggle with mathematical reasoning, often making systematic errors. A promising solution is reinforcement learning (RL) guided by reward models, particularly those focusing on process rewards, which score each intermediate step rather than solely evaluating the final outcome. This approach is more effective at guiding policy models towards correct reasoning trajectories. In this work, we propose an entropy-regularized process reward model (ER-PRM) that integrates KL-regularized Markov Decision Processes (MDP) to balance policy optimization with the need to prevent the policy from shifting too far from its initial distribution. We derive a novel reward construction method based on the theoretical results. Our theoretical analysis shows that we could derive the optimal reward model from the initial policy sampling. Our empirical experiments on the MATH and GSM8K benchmarks demonstrate that ER-PRM consistently outperforms existing process reward models, achieving 1% improvement on GSM8K and 2-3% improvement on MATH under best-of-N evaluation, and more than 1% improvement under RLHF. These results highlight the efficacy of entropy-regularization in enhancing LLMs' reasoning capabilities.
Related papers
- The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRMs) aim to identify and mitigate intermediate errors in the reasoning processes.
We develop a consensus filtering mechanism that effectively integrates Monte Carlo (MC) estimation with Large Language Models (LLMs)
We release a new state-of-the-art PRM that outperforms existing open-source alternatives.
arXiv Detail & Related papers (2025-01-13T13:10:16Z) - Process Reward Model with Q-Value Rankings [18.907163177605607]
Process Reward Modeling (PRM) is critical for complex reasoning and decision-making tasks.
We introduce the Process Q-value Model (PQM), a novel framework that redefines PRM in the context of a Markov Decision Process.
PQM optimize Q-value rankings based on a novel comparative loss function, enhancing the model's ability to capture the intricate dynamics among sequential decisions.
arXiv Detail & Related papers (2024-10-15T05:10:34Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
We propose Weight Averaged Reward Models (WARM) to mitigate reward hacking.
Experiments on summarization tasks, using best-of-N and RL methods, shows that WARM improves the overall quality and alignment of LLM predictions.
arXiv Detail & Related papers (2024-01-22T18:27:08Z) - Let's Reinforce Step by Step [10.65244642965387]
We use Reinforcement Learning from Human Feedback to shape model reasoning processes.
Our results show that the fine-grained reward provided by PRM-based methods enhances accuracy on simple mathematical reasoning.
We also show the critical role reward aggregation functions play in model performance.
arXiv Detail & Related papers (2023-11-10T01:35:51Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Principled Reinforcement Learning with Human Feedback from Pairwise or
$K$-wise Comparisons [79.98542868281473]
We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF)
We show that when training a policy based on the learned reward model, MLE fails while a pessimistic MLE provides policies with improved performance under certain coverage assumptions.
arXiv Detail & Related papers (2023-01-26T18:07:21Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.