Making Bias Amplification in Balanced Datasets Directional and Interpretable
- URL: http://arxiv.org/abs/2412.11060v1
- Date: Sun, 15 Dec 2024 05:32:54 GMT
- Title: Making Bias Amplification in Balanced Datasets Directional and Interpretable
- Authors: Bhanu Tokas, Rahul Nair, Hannah Kerner,
- Abstract summary: We propose a new predictability-based metric called directional predictability amplification (DPA)
DPA measures directional bias amplification, even for balanced datasets.
Our experiments show that DPA is an effective metric for measuring directional bias amplification.
- Score: 13.38327450225136
- License:
- Abstract: Most of the ML datasets we use today are biased. When we train models on these biased datasets, they often not only learn dataset biases but can also amplify them -- a phenomenon known as bias amplification. Several co-occurrence-based metrics have been proposed to measure bias amplification between a protected attribute A (e.g., gender) and a task T (e.g., cooking). However, these metrics fail to measure biases when A is balanced with T. To measure bias amplification in balanced datasets, recent work proposed a predictability-based metric called leakage amplification. However, leakage amplification cannot identify the direction in which biases are amplified. In this work, we propose a new predictability-based metric called directional predictability amplification (DPA). DPA measures directional bias amplification, even for balanced datasets. Unlike leakage amplification, DPA is easier to interpret and less sensitive to attacker models (a hyperparameter in predictability-based metrics). Our experiments on tabular and image datasets show that DPA is an effective metric for measuring directional bias amplification. The code will be available soon.
Related papers
- How far can bias go? -- Tracing bias from pretraining data to alignment [54.51310112013655]
This study examines the correlation between gender-occupation bias in pre-training data and their manifestation in LLMs.
Our findings reveal that biases present in pre-training data are amplified in model outputs.
arXiv Detail & Related papers (2024-11-28T16:20:25Z) - Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
Deep neural networks are sensitive to bias in the data.
In this work, we show the importance of accurately predicting the bias-conflicting and bias-aligned samples.
We propose a new bias identification method based on anomaly detection.
arXiv Detail & Related papers (2024-07-24T17:30:21Z) - Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
We study the "dataset bias" problem from a statistical standpoint.
We identify the main cause of the problem as the strong correlation between a class attribute u and a non-class attribute b.
We propose to mitigate dataset bias via either weighting the objective of each sample n by frac1p(u_n|b_n) or sampling that sample with a weight proportional to frac1p(u_n|b_n).
arXiv Detail & Related papers (2024-02-05T22:58:06Z) - IBADR: an Iterative Bias-Aware Dataset Refinement Framework for
Debiasing NLU models [52.03761198830643]
We propose IBADR, an Iterative Bias-Aware dataset Refinement framework.
We first train a shallow model to quantify the bias degree of samples in the pool.
Then, we pair each sample with a bias indicator representing its bias degree, and use these extended samples to train a sample generator.
In this way, this generator can effectively learn the correspondence relationship between bias indicators and samples.
arXiv Detail & Related papers (2023-11-01T04:50:38Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Men Also Do Laundry: Multi-Attribute Bias Amplification [2.492300648514129]
Computer vision systems are not only reproducing but amplifying harmful social biases.
We propose a new metric: Multi-Attribute Bias Amplification.
We validate our proposed metric through an analysis of gender bias amplification on the COCO and imSitu datasets.
arXiv Detail & Related papers (2022-10-21T12:50:15Z) - A Systematic Study of Bias Amplification [16.245943270343343]
Recent research suggests that predictions made by machine-learning models can amplify biases present in the training data.
We perform the first systematic, controlled study into when and how bias amplification occurs.
arXiv Detail & Related papers (2022-01-27T18:04:24Z) - Evading the Simplicity Bias: Training a Diverse Set of Models Discovers
Solutions with Superior OOD Generalization [93.8373619657239]
Neural networks trained with SGD were recently shown to rely preferentially on linearly-predictive features.
This simplicity bias can explain their lack of robustness out of distribution (OOD)
We demonstrate that the simplicity bias can be mitigated and OOD generalization improved.
arXiv Detail & Related papers (2021-05-12T12:12:24Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Directional Bias Amplification [21.482317675176443]
Bias amplification is the tendency of models to amplify the biases present in the data they are trained on.
A metric for measuring bias amplification was introduced in the seminal work by Zhao et al.
We introduce and analyze a new, decoupled metric for measuring bias amplification, $textBiasAmp_rightarrow$ (Directional Bias Amplification)
arXiv Detail & Related papers (2021-02-24T22:54:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.