Impact of Adversarial Attacks on Deep Learning Model Explainability
- URL: http://arxiv.org/abs/2412.11119v1
- Date: Sun, 15 Dec 2024 08:41:37 GMT
- Title: Impact of Adversarial Attacks on Deep Learning Model Explainability
- Authors: Gazi Nazia Nur, Mohammad Ahnaf Sadat,
- Abstract summary: We investigate the impact of adversarial attacks on the explainability of deep learning models.
Our research focuses on the robustness of these explanations when models are subjected to adversarial attacks.
- Score: 0.0
- License:
- Abstract: In this paper, we investigate the impact of adversarial attacks on the explainability of deep learning models, which are commonly criticized for their black-box nature despite their capacity for autonomous feature extraction. This black-box nature can affect the perceived trustworthiness of these models. To address this, explainability techniques such as GradCAM, SmoothGrad, and LIME have been developed to clarify model decision-making processes. Our research focuses on the robustness of these explanations when models are subjected to adversarial attacks, specifically those involving subtle image perturbations that are imperceptible to humans but can significantly mislead models. For this, we utilize attack methods like the Fast Gradient Sign Method (FGSM) and the Basic Iterative Method (BIM) and observe their effects on model accuracy and explanations. The results reveal a substantial decline in model accuracy, with accuracies dropping from 89.94% to 58.73% and 45.50% under FGSM and BIM attacks, respectively. Despite these declines in accuracy, the explanation of the models measured by metrics such as Intersection over Union (IoU) and Root Mean Square Error (RMSE) shows negligible changes, suggesting that these metrics may not be sensitive enough to detect the presence of adversarial perturbations.
Related papers
- Deferred Poisoning: Making the Model More Vulnerable via Hessian Singularization [36.13844441263675]
We introduce a more threatening type of poisoning attack called the Deferred Poisoning Attack.
This new attack allows the model to function normally during the training and validation phases but makes it very sensitive to evasion attacks or even natural noise.
We have conducted both theoretical and empirical analyses of the proposed method and validated its effectiveness through experiments on image classification tasks.
arXiv Detail & Related papers (2024-11-06T08:27:49Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Extreme Miscalibration and the Illusion of Adversarial Robustness [66.29268991629085]
Adversarial Training is often used to increase model robustness.
We show that this observed gain in robustness is an illusion of robustness (IOR)
We urge the NLP community to incorporate test-time temperature scaling into their robustness evaluations.
arXiv Detail & Related papers (2024-02-27T13:49:12Z) - Investigating the Impact of Model Instability on Explanations and Uncertainty [43.254616360807496]
We simulate uncertainty in text input by introducing noise at inference time.
We find that high uncertainty doesn't necessarily imply low explanation plausibility.
This suggests that noise-augmented models may be better at identifying salient tokens when uncertain.
arXiv Detail & Related papers (2024-02-20T13:41:21Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
We propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information.
By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples.
We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks.
arXiv Detail & Related papers (2023-06-06T14:45:24Z) - Semantic Image Attack for Visual Model Diagnosis [80.36063332820568]
In practice, metric analysis on a specific train and test dataset does not guarantee reliable or fair ML models.
This paper proposes Semantic Image Attack (SIA), a method based on the adversarial attack that provides semantic adversarial images.
arXiv Detail & Related papers (2023-03-23T03:13:04Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z) - Reducing Risk of Model Inversion Using Privacy-Guided Training [0.0]
Several recent attacks have been able to infer sensitive information from trained models.
We present a solution for countering model inversion attacks in tree-based models.
arXiv Detail & Related papers (2020-06-29T09:02:16Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
We present a new approach to improve the robustness of a model against black-box transfer attacks.
A removable additional neural network is included in the target model, and is designed to induce the textitluring effect.
Our deception-based method only needs to have access to the predictions of the target model and does not require a labeled data set.
arXiv Detail & Related papers (2020-04-10T06:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.