Smaller Language Models Are Better Instruction Evolvers
- URL: http://arxiv.org/abs/2412.11231v1
- Date: Sun, 15 Dec 2024 16:07:48 GMT
- Title: Smaller Language Models Are Better Instruction Evolvers
- Authors: Tingfeng Hui, Lulu Zhao, Guanting Dong, Yaqi Zhang, Hua Zhou, Sen Su,
- Abstract summary: Small language models (SLMs) can synthesize more effective instructions than large language models (LLMs)
We propose Instruction Complex-Aware IFD (IC-IFD) to evaluate the effectiveness of instruction data more accurately.
- Score: 10.587052565101844
- License:
- Abstract: Instruction tuning has been widely used to unleash the complete potential of large language models. Notably, complex and diverse instructions are of significant importance as they can effectively align models with various downstream tasks. However, current approaches to constructing large-scale instructions predominantly favour powerful models such as GPT-4 or those with over 70 billion parameters, under the empirical presumption that such larger language models (LLMs) inherently possess enhanced capabilities. In this study, we question this prevalent assumption and conduct an in-depth exploration into the potential of smaller language models (SLMs) in the context of instruction evolution. Extensive experiments across three scenarios of instruction evolution reveal that smaller language models (SLMs) can synthesize more effective instructions than LLMs. Further analysis demonstrates that SLMs possess a broader output space during instruction evolution, resulting in more complex and diverse variants. We also observe that the existing metrics fail to focus on the impact of the instructions. Thus, we propose Instruction Complex-Aware IFD (IC-IFD), which introduces instruction complexity in the original IFD score to evaluate the effectiveness of instruction data more accurately. Our source code is available at: \href{https://github.com/HypherX/Evolution-Analysis}{https://github.com/HypherX/Evolution-Analysis}
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - A Comparative Study of Learning Paradigms in Large Language Models via Intrinsic Dimension [16.671316494925346]
This study investigates the effects of supervised fine-tuning and in-context learning on the hidden representations of Large Language Models (LLMs)
We first explore how the ID of LLM representations evolves during SFT and how it varies due to the number of demonstrations in ICL.
We then compare the IDs induced by SFT and ICL and find that ICL consistently induces a higher ID compared to SFT.
arXiv Detail & Related papers (2024-12-09T06:37:35Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment.
Experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%.
arXiv Detail & Related papers (2024-09-27T08:20:59Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
We introduce a technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants.
Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions.
Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
arXiv Detail & Related papers (2024-06-17T08:08:11Z) - Phased Instruction Fine-Tuning for Large Language Models [12.037895935630882]
Phased Instruction Fine-Tuning (Phased IFT) is proposed, based on the idea that learning to follow instructions is a gradual process.
It assesses instruction difficulty using GPT-4, divides the instruction data into subsets of increasing difficulty, and uptrains the model sequentially on these subsets.
Experiments with Llama-2 7B/13B/70B, Llama3 8/70B and Mistral-7B models using Alpaca data show that Phased IFT significantly outperforms One-off IFT.
arXiv Detail & Related papers (2024-06-01T04:25:26Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
We introduce a simplified instruction-following task and use synthetic datasets to analyze a Transformer-based causal language model.
Our findings suggest that the model learns task-specific information by clustering data within its hidden space, with this clustering process evolving dynamically during learning.
arXiv Detail & Related papers (2024-02-19T14:02:31Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Mixture-of-Experts Meets Instruction Tuning:A Winning Combination for
Large Language Models [125.91897197446379]
We find that MoE models benefit more from instruction tuning than dense models.
Our most powerful model, FLAN-MOE-32B, surpasses the performance of FLAN-PALM-62B on four benchmark tasks.
arXiv Detail & Related papers (2023-05-24T04:22:26Z) - LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale
Instructions [28.937552799649808]
Large language models (LLMs) with instruction fine-tuning demonstrate superior generative capabilities.
We develop a large set of 2.58M instructions based on both existing and newly-generated instructions.
We fine-tune a diverse herd of models, collectively referred to as LaMini-LM, which includes models from both the encoder-decoder and decoder-only families.
arXiv Detail & Related papers (2023-04-27T17:58:49Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.