Volumetric Mapping with Panoptic Refinement via Kernel Density Estimation for Mobile Robots
- URL: http://arxiv.org/abs/2412.11241v1
- Date: Sun, 15 Dec 2024 16:46:23 GMT
- Title: Volumetric Mapping with Panoptic Refinement via Kernel Density Estimation for Mobile Robots
- Authors: Khang Nguyen, Tuan Dang, Manfred Huber,
- Abstract summary: Mobile robots usually use lightweight networks to segment objects on RGB images and then localize them via depth maps.
We address the problem of panoptic segmentation quality in 3D scene reconstruction by refining segmentation errors using non-parametric statistical methods.
We map the predicted masks into a depth frame to estimate their distribution via kernel densities.
The outliers in depth perception are then rejected without the need for additional parameters.
- Score: 2.8668675011182967
- License:
- Abstract: Reconstructing three-dimensional (3D) scenes with semantic understanding is vital in many robotic applications. Robots need to identify which objects, along with their positions and shapes, to manipulate them precisely with given tasks. Mobile robots, especially, usually use lightweight networks to segment objects on RGB images and then localize them via depth maps; however, they often encounter out-of-distribution scenarios where masks over-cover the objects. In this paper, we address the problem of panoptic segmentation quality in 3D scene reconstruction by refining segmentation errors using non-parametric statistical methods. To enhance mask precision, we map the predicted masks into a depth frame to estimate their distribution via kernel densities. The outliers in depth perception are then rejected without the need for additional parameters in an adaptive manner to out-of-distribution scenarios, followed by 3D reconstruction using projective signed distance functions (SDFs). We validate our method on a synthetic dataset, which shows improvements in both quantitative and qualitative results for panoptic mapping. Through real-world testing, the results furthermore show our method's capability to be deployed on a real-robot system. Our source code is available at: https://github.com/mkhangg/refined panoptic mapping.
Related papers
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - Memorize What Matters: Emergent Scene Decomposition from Multitraverse [54.487589469432706]
We introduce 3D Gaussian Mapping, a camera-only offline mapping framework grounded in 3D Gaussian Splatting.
3DGM converts multitraverse RGB videos from the same region into a Gaussian-based environmental map while concurrently performing 2D ephemeral object segmentation.
We build the Mapverse benchmark, sourced from the Ithaca365 and nuPlan datasets, to evaluate our method in unsupervised 2D segmentation, 3D reconstruction, and neural rendering.
arXiv Detail & Related papers (2024-05-27T14:11:17Z) - Neural Implicit Dense Semantic SLAM [83.04331351572277]
We propose a novel RGBD vSLAM algorithm that learns a memory-efficient, dense 3D geometry, and semantic segmentation of an indoor scene in an online manner.
Our pipeline combines classical 3D vision-based tracking and loop closing with neural fields-based mapping.
Our proposed algorithm can greatly enhance scene perception and assist with a range of robot control problems.
arXiv Detail & Related papers (2023-04-27T23:03:52Z) - Object-level 3D Semantic Mapping using a Network of Smart Edge Sensors [25.393382192511716]
We extend a multi-view 3D semantic mapping system consisting of a network of distributed edge sensors with object-level information.
Our method is evaluated on the public Behave dataset where it shows pose estimation within a few centimeters and in real-world experiments with the sensor network in a challenging lab environment.
arXiv Detail & Related papers (2022-11-21T11:13:08Z) - SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit
Neural Representations [37.733802382489515]
This paper addresses the problems of achieving large-scale 3D reconstructions with implicit representations using 3D LiDAR measurements.
We learn and store implicit features through an octree-based hierarchical structure, which is sparse and sparse.
Our experiments show that our 3D reconstructions are more accurate, complete, and memory-efficient than current state-of-the-art 3D mapping methods.
arXiv Detail & Related papers (2022-10-05T14:38:49Z) - Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from
Depth Maps [66.24554680709417]
Knowing the exact 3D location of workers and robots in a collaborative environment enables several real applications.
We propose a non-invasive framework based on depth devices and deep neural networks to estimate the 3D pose of robots from an external camera.
arXiv Detail & Related papers (2022-07-06T08:52:12Z) - Large-Scale 3D Semantic Reconstruction for Automated Driving Vehicles
with Adaptive Truncated Signed Distance Function [9.414880946870916]
We propose a novel 3D reconstruction and semantic mapping system using LiDAR and camera sensors.
An Adaptive Truncated Function is introduced to describe surfaces implicitly, which can deal with different LiDAR point sparsities.
An optimal image patch selection strategy is proposed to estimate the optimal semantic class for each triangle mesh.
arXiv Detail & Related papers (2022-02-28T15:11:25Z) - Sparse Depth Completion with Semantic Mesh Deformation Optimization [4.03103540543081]
We propose a neural network with post-optimization, which takes an RGB image and sparse depth samples as input and predicts the complete depth map.
Our evaluation results outperform the existing work consistently on both indoor and outdoor datasets.
arXiv Detail & Related papers (2021-12-10T13:01:06Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
We introduce a method for jointly training 3D object detection and monocular dense depth reconstruction neural networks.
It takes as inputs, a LiDAR point-cloud, and a single RGB image during inference and produces object pose predictions as well as a densely reconstructed depth map.
While our object detection is trained in a supervised manner, the depth prediction network is trained with both self-supervised and supervised loss functions.
arXiv Detail & Related papers (2021-04-13T04:25:54Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.