Regularized Dikin Walks for Sampling Truncated Logconcave Measures, Mixed Isoperimetry and Beyond Worst-Case Analysis
- URL: http://arxiv.org/abs/2412.11303v1
- Date: Sun, 15 Dec 2024 20:43:51 GMT
- Title: Regularized Dikin Walks for Sampling Truncated Logconcave Measures, Mixed Isoperimetry and Beyond Worst-Case Analysis
- Authors: Minhui Jiang, Yuansi Chen,
- Abstract summary: We study the problem of drawing samples from a logconcave distribution truncated on a polytope.
Building on interior point methods and the Dikin walk, we analyze the mixing time of regularized Dikin walks.
- Score: 3.399289369740637
- License:
- Abstract: We study the problem of drawing samples from a logconcave distribution truncated on a polytope, motivated by computational challenges in Bayesian statistical models with indicator variables, such as probit regression. Building on interior point methods and the Dikin walk for sampling from uniform distributions, we analyze the mixing time of regularized Dikin walks. Our contributions are threefold. First, for a logconcave and log-smooth distribution with condition number $\kappa$, truncated on a polytope in $\mathbb{R}^n$ defined with $m$ linear constraints, we prove that the soft-threshold Dikin walk mixes in $\widetilde{O}((m+\kappa)n)$ iterations from a warm initialization. It improves upon prior work which required the polytope to be bounded and involved a bound dependent on the radius of the bounded region. Moreover, we introduce the regularized Dikin walk using Lewis weights for approximating the John ellipsoid. We show that it mixes in $\widetilde{O}((n^{2.5}+\kappa n)$. Second, we extend the mixing time guarantees mentioned above to weakly log-concave distributions truncated on polytopes, provided that they have a finite covariance matrix. Third, going beyond worst-case mixing time analysis, we demonstrate that soft-threshold Dikin walk can mix significantly faster when only a limited number of constraints intersect the high-probability mass of the distribution, improving the $\widetilde{O}((m+\kappa)n)$ upper bound to $\widetilde{O}(m + \kappa n)$. Additionally, per-iteration complexity of regularized Dikin walk and ways to generate a warm initialization are discussed to facilitate practical implementation.
Related papers
- Efficiently learning and sampling multimodal distributions with data-based initialization [20.575122468674536]
We consider the problem of sampling a multimodal distribution with a Markov chain given a small number of samples from the stationary measure.
We show that if the Markov chain has a $k$th order spectral gap, samples from the stationary distribution will efficiently generate a sample whose conditional law is $varepsilon$-close in TV distance to the stationary measure.
arXiv Detail & Related papers (2024-11-14T01:37:02Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
We provide the first convergence bounds which are linear in the data dimension.
We show that diffusion models require at most $tilde O(fracd log2(1/delta)varepsilon2)$ steps to approximate an arbitrary distribution.
arXiv Detail & Related papers (2023-08-07T16:01:14Z) - When does Metropolized Hamiltonian Monte Carlo provably outperform
Metropolis-adjusted Langevin algorithm? [4.657614491309671]
We analyze the mixing time of Metropolized Hamiltonian Monte Carlo (HMC) with the leapfrog integrator.
We show that the joint distribution of the location and velocity variables of the discretization of the continuous HMC dynamics stays approximately invariant.
arXiv Detail & Related papers (2023-04-10T17:35:57Z) - Settling the Sample Complexity of Model-Based Offline Reinforcement
Learning [50.5790774201146]
offline reinforcement learning (RL) learns using pre-collected data without further exploration.
Prior algorithms or analyses either suffer from suboptimal sample complexities or incur high burn-in cost to reach sample optimality.
We demonstrate that the model-based (or "plug-in") approach achieves minimax-optimal sample complexity without burn-in cost.
arXiv Detail & Related papers (2022-04-11T17:26:19Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Wasserstein distance estimates for the distributions of numerical
approximations to ergodic stochastic differential equations [0.3553493344868413]
We study the Wasserstein distance between the in distribution of an ergodic differential equation and the distribution in the strongly log-concave case.
This allows us to study in a unified way a number of different approximations proposed in the literature for the overdamped and underdamped Langevin dynamics.
arXiv Detail & Related papers (2021-04-26T07:50:04Z) - A New Framework for Variance-Reduced Hamiltonian Monte Carlo [88.84622104944503]
We propose a new framework of variance-reduced Hamiltonian Monte Carlo (HMC) methods for sampling from an $L$-smooth and $m$-strongly log-concave distribution.
We show that the unbiased gradient estimators, including SAGA and SVRG, based HMC methods achieve highest gradient efficiency with small batch size.
Experimental results on both synthetic and real-world benchmark data show that our new framework significantly outperforms the full gradient and gradient HMC approaches.
arXiv Detail & Related papers (2021-02-09T02:44:24Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z) - Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized
Hamiltonian Monte Carlo [23.781520510778716]
This is the first high-accuracy mixing time result for logconcave distributions using only first-order function information.
We give evidence that dependence on $kappa$ is likely to be necessary standard Metropolized firstorder methods.
arXiv Detail & Related papers (2020-02-10T22:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.