High-speed and High-quality Vision Reconstruction of Spike Camera with Spike Stability Theorem
- URL: http://arxiv.org/abs/2412.11639v1
- Date: Mon, 16 Dec 2024 10:33:10 GMT
- Title: High-speed and High-quality Vision Reconstruction of Spike Camera with Spike Stability Theorem
- Authors: Wei Zhang, Weiquan Yan, Yun Zhao, Wenxiang Cheng, Gang Chen, Huihui Zhou, Yonghong Tian,
- Abstract summary: We propose a new spike stability theorem that reveals the relationship between spike stream characteristics and stable light intensity.
Based on the spike stability theorem, two parameter-free algorithms are designed for the real-time vision reconstruction of the spike camera.
Our work provides new theorem and algorithm foundations for the real-time edge-end vision processing of the spike camera.
- Score: 26.827138186323698
- License:
- Abstract: Neuromorphic vision sensors, such as the dynamic vision sensor (DVS) and spike camera, have gained increasing attention in recent years. The spike camera can detect fine textures by mimicking the fovea in the human visual system, and output a high-frequency spike stream. Real-time high-quality vision reconstruction from the spike stream can build a bridge to high-level vision task applications of the spike camera. To realize high-speed and high-quality vision reconstruction of the spike camera, we propose a new spike stability theorem that reveals the relationship between spike stream characteristics and stable light intensity. Based on the spike stability theorem, two parameter-free algorithms are designed for the real-time vision reconstruction of the spike camera. To demonstrate the performances of our algorithms, two datasets (a public dataset PKU-Spike-High-Speed and a newly constructed dataset SpikeCityPCL) are used to compare the reconstruction quality and speed of various reconstruction methods. Experimental results show that, compared with the current state-of-the-art (SOTA) reconstruction methods, our reconstruction methods obtain the best tradeoff between the reconstruction quality and speed. Additionally, we design the FPGA implementation method of our algorithms to realize the real-time (running at 20,000 FPS) visual reconstruction. Our work provides new theorem and algorithm foundations for the real-time edge-end vision processing of the spike camera.
Related papers
- Rethinking High-speed Image Reconstruction Framework with Spike Camera [48.627095354244204]
Spike cameras generate continuous spike streams to capture high-speed scenes with lower bandwidth and higher dynamic range than traditional RGB cameras.
We introduce a novel spike-to-image reconstruction framework SpikeCLIP that goes beyond traditional training paradigms.
Our experiments on real-world low-light datasets demonstrate that SpikeCLIP significantly enhances texture details and the luminance balance of recovered images.
arXiv Detail & Related papers (2025-01-08T13:00:17Z) - SwinSF: Image Reconstruction from Spatial-Temporal Spike Streams [2.609896297570564]
We introduce Swin Spikeformer (SwinSF), a novel model for dynamic scene reconstruction from spike streams.
SwinSF combines shifted window self-attention and proposed temporal spike attention, ensuring a comprehensive feature extraction.
We build a new synthesized dataset for spike image reconstruction which matches the resolution of the latest spike camera.
arXiv Detail & Related papers (2024-07-22T15:17:39Z) - Spike-NeRF: Neural Radiance Field Based On Spike Camera [24.829344089740303]
We propose Spike-NeRF, the first Neural Radiance Field derived from spike data.
Instead of the multi-view images at the same time of NeRF, the inputs of Spike-NeRF are continuous spike streams captured by a moving spike camera in a very short time.
Our results demonstrate that Spike-NeRF produces more visually appealing results than the existing methods and the baseline we proposed in high-speed scenes.
arXiv Detail & Related papers (2024-03-25T04:05:23Z) - PASTA: Towards Flexible and Efficient HDR Imaging Via Progressively Aggregated Spatio-Temporal Alignment [91.38256332633544]
PASTA is a Progressively Aggregated Spatio-Temporal Alignment framework for HDR deghosting.
Our approach achieves effectiveness and efficiency by harnessing hierarchical representation during feature distanglement.
Experimental results showcase PASTA's superiority over current SOTA methods in both visual quality and performance metrics.
arXiv Detail & Related papers (2024-03-15T15:05:29Z) - SpikeReveal: Unlocking Temporal Sequences from Real Blurry Inputs with Spike Streams [44.02794438687478]
Spike cameras have proven effective in capturing motion features and beneficial for solving this ill-posed problem.
Existing methods fall into the supervised learning paradigm, which suffers from notable performance degradation when applied to real-world scenarios.
We propose the first self-supervised framework for the task of spike-guided motion deblurring.
arXiv Detail & Related papers (2024-03-14T15:29:09Z) - Finding Visual Saliency in Continuous Spike Stream [23.591309376586835]
In this paper, we investigate the visual saliency in the continuous spike stream for the first time.
We propose a Recurrent Spiking Transformer framework, which is based on a full spiking neural network.
Our framework exhibits a substantial margin of improvement in highlighting and capturing visual saliency in the spike stream.
arXiv Detail & Related papers (2024-03-10T15:15:35Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed.
This paper focuses on five event-aided image and video enhancement tasks.
arXiv Detail & Related papers (2023-12-13T15:42:04Z) - Video Dynamics Prior: An Internal Learning Approach for Robust Video
Enhancements [83.5820690348833]
We present a framework for low-level vision tasks that does not require any external training data corpus.
Our approach learns neural modules by optimizing over a corrupted sequence, leveraging the weights of the coherence-temporal test and statistics internal statistics.
arXiv Detail & Related papers (2023-12-13T01:57:11Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - 10-mega pixel snapshot compressive imaging with a hybrid coded aperture [48.95666098332693]
High resolution images are widely used in our daily life, whereas high-speed video capture is challenging due to the low frame rate of cameras working at the high resolution mode.
snapshot imaging (SCI) was proposed as a solution to the low throughput of existing imaging systems.
arXiv Detail & Related papers (2021-06-30T01:09:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.