Efficiently Achieving Secure Model Training and Secure Aggregation to Ensure Bidirectional Privacy-Preservation in Federated Learning
- URL: http://arxiv.org/abs/2412.11737v1
- Date: Mon, 16 Dec 2024 12:58:21 GMT
- Title: Efficiently Achieving Secure Model Training and Secure Aggregation to Ensure Bidirectional Privacy-Preservation in Federated Learning
- Authors: Xue Yang, Depan Peng, Yan Feng, Xiaohu Tang, Weijun Fang, Jun Shao,
- Abstract summary: Bidirectional privacy-preservation federated learning is crucial as both local gradients and the global model may leak privacy.
We design an efficient and high-accuracy bidirectional privacy-preserving scheme for federated learning to complete secure model training and secure aggregation.
Our scheme significantly outperforms state-of-the-art bidirectional privacy-preservation baselines in terms of computational cost, model accuracy, and defense ability.
- Score: 36.94596192980534
- License:
- Abstract: Bidirectional privacy-preservation federated learning is crucial as both local gradients and the global model may leak privacy. However, only a few works attempt to achieve it, and they often face challenges such as excessive communication and computational overheads, or significant degradation of model accuracy, which hinders their practical applications. In this paper, we design an efficient and high-accuracy bidirectional privacy-preserving scheme for federated learning to complete secure model training and secure aggregation. To efficiently achieve bidirectional privacy, we design an efficient and accuracy-lossless model perturbation method on the server side (called $\mathbf{MP\_Server}$) that can be combined with local differential privacy (LDP) to prevent clients from accessing the model, while ensuring that the local gradients obtained on the server side satisfy LDP. Furthermore, to ensure model accuracy, we customize a distributed differential privacy mechanism on the client side (called $\mathbf{DDP\_Client}$). When combined with $\mathbf{MP\_Server}$, it ensures LDP of the local gradients, while ensuring that the aggregated result matches the accuracy of central differential privacy (CDP). Extensive experiments demonstrate that our scheme significantly outperforms state-of-the-art bidirectional privacy-preservation baselines (SOTAs) in terms of computational cost, model accuracy, and defense ability against privacy attacks. Particularly, given target accuracy, the training time of SOTAs is approximately $200$ times, or even over $1000$ times, longer than that of our scheme. When the privacy budget is set relatively small, our scheme incurs less than $6\%$ accuracy loss compared to the privacy-ignoring method, while SOTAs suffer up to $20\%$ accuracy loss. Experimental results also show that the defense capability of our scheme outperforms than SOTAs.
Related papers
- Sparsity-Preserving Differentially Private Training of Large Embedding
Models [67.29926605156788]
DP-SGD is a training algorithm that combines differential privacy with gradient descent.
Applying DP-SGD naively to embedding models can destroy gradient sparsity, leading to reduced training efficiency.
We present two new algorithms, DP-FEST and DP-AdaFEST, that preserve gradient sparsity during private training of large embedding models.
arXiv Detail & Related papers (2023-11-14T17:59:51Z) - Augment then Smooth: Reconciling Differential Privacy with Certified Robustness [32.49465965847842]
We show that standard differentially private model training is insufficient for providing strong certified robustness guarantees.
We present DP-CERT, a simple and effective method that achieves both privacy and robustness guarantees simultaneously.
arXiv Detail & Related papers (2023-06-14T17:52:02Z) - Private, Efficient, and Accurate: Protecting Models Trained by
Multi-party Learning with Differential Privacy [8.8480262507008]
We propose PEA (Private, Efficient, Accurate), which consists of a secure DPSGD protocol and two optimization methods.
We implement PEA in two open-source MPL frameworks: TF-Encrypted and Queqiao.
Experiments show that PEA can train a differentially private classification model with an accuracy of 88% for CIFAR-10 within 7 minutes under the LAN setting.
arXiv Detail & Related papers (2022-08-18T06:48:25Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy (DP) provides a formal framework for training machine learning models with individual example level privacy.
Private training using DP-SGD protects against leakage by injecting noise into individual example gradients.
While this result is quite appealing, the computational cost of training large-scale models with DP-SGD is substantially higher than non-private training.
arXiv Detail & Related papers (2022-05-06T01:22:20Z) - The Fundamental Price of Secure Aggregation in Differentially Private
Federated Learning [34.630300910399036]
We characterize the fundamental communication cost required to obtain the best accuracy under $varepsilon$ central DP.
Our results show that $tildeOleft( min(n2varepsilon2, d) right)$ bits per client are both sufficient and necessary.
This provides a significant improvement relative to state-of-the-art SecAgg distributed DP schemes.
arXiv Detail & Related papers (2022-03-07T22:56:09Z) - Federated Learning with Sparsified Model Perturbation: Improving
Accuracy under Client-Level Differential Privacy [27.243322019117144]
Federated learning (FL) enables distributed clients to collaboratively learn a shared statistical model.
sensitive information about the training data can still be inferred from model updates shared in FL.
Differential privacy (DP) is the state-of-the-art technique to defend against those attacks.
This paper develops a novel FL scheme named Fed-SMP that provides client-level DP guarantee while maintaining high model accuracy.
arXiv Detail & Related papers (2022-02-15T04:05:42Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
A differentially private model degrades the utility drastically when the model comprises a large number of trainable parameters.
We propose an algorithm emphGradient Embedding Perturbation (GEP) towards training differentially private deep models with decent accuracy.
arXiv Detail & Related papers (2021-02-25T04:29:58Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.