DriveGazen: Event-Based Driving Status Recognition using Conventional Camera
- URL: http://arxiv.org/abs/2412.11753v1
- Date: Mon, 16 Dec 2024 13:12:11 GMT
- Title: DriveGazen: Event-Based Driving Status Recognition using Conventional Camera
- Authors: Xiaoyin Yang,
- Abstract summary: We introduce a wearable driving status recognition device and our open-source dataset, along with a new real-time method robust to changes in lighting conditions for identifying driving status from eye observations of drivers.
The core of our method is generating event frames from conventional intensity frames, and the other is a newly designed Attention Driving State Network (ADSN)
To the best of our knowledge, our method is the first to utilize guide attention spiking neural networks and eye-based event frames generated from conventional cameras for driving status recognition.
- Score: 0.4662017507844857
- License:
- Abstract: We introduce a wearable driving status recognition device and our open-source dataset, along with a new real-time method robust to changes in lighting conditions for identifying driving status from eye observations of drivers. The core of our method is generating event frames from conventional intensity frames, and the other is a newly designed Attention Driving State Network (ADSN). Compared to event cameras, conventional cameras offer complete information and lower hardware costs, enabling captured frames to encode rich spatial information. However, these textures lack temporal information, posing challenges in effectively identifying driving status. DriveGazen addresses this issue from three perspectives. First, we utilize video frames to generate realistic synthetic dynamic vision sensor (DVS) events. Second, we adopt a spiking neural network to decode pertinent temporal information. Lastly, ADSN extracts crucial spatial cues from corresponding intensity frames and conveys spatial attention to convolutional spiking layers during both training and inference through a novel guide attention module to guide the feature learning and feature enhancement of the event frame. We specifically collected the Driving Status (DriveGaze) dataset to demonstrate the effectiveness of our approach. Additionally, we validate the superiority of the DriveGazen on the Single-eye Event-based Emotion (SEE) dataset. To the best of our knowledge, our method is the first to utilize guide attention spiking neural networks and eye-based event frames generated from conventional cameras for driving status recognition. Please refer to our project page for more details: https://github.com/TooyoungALEX/AAAI25-DriveGazen.
Related papers
- Event Masked Autoencoder: Point-wise Action Recognition with Event-Based Cameras [8.089601548579116]
We propose a novel framework that preserves and exploits the structure of event data for action recognition.
Our framework consists of two main components: 1) a point-wise event masked autoencoder (MAE) that learns a compact and discrimi representation of event patches by reconstructing them from masked raw event camera points data; 2) an improved event points patch generation algorithm that leverages an event data inlier model and point-wise data augmentation techniques to enhance the quality and diversity event points patches.
arXiv Detail & Related papers (2025-01-02T03:49:03Z) - EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range.
Event-based cameras address limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios.
This paper offers an exhaustive review of research and applications particularly in the autonomous driving context.
arXiv Detail & Related papers (2024-07-05T06:17:00Z) - Neuromorphic Synergy for Video Binarization [54.195375576583864]
Bimodal objects serve as a visual form to embed information that can be easily recognized by vision systems.
Neuromorphic cameras offer new capabilities for alleviating motion blur, but it is non-trivial to first de-blur and then binarize the images in a real-time manner.
We propose an event-based binary reconstruction method that leverages the prior knowledge of the bimodal target's properties to perform inference independently in both event space and image space.
We also develop an efficient integration method to propagate this binary image to high frame rate binary video.
arXiv Detail & Related papers (2024-02-20T01:43:51Z) - In the Blink of an Eye: Event-based Emotion Recognition [44.12621619057609]
We introduce a wearable single-eye emotion recognition device and a real-time approach to recognizing emotions from partial observations of an emotion.
At the heart of our method is a bio-inspired event-based camera setup and a newly designed lightweight Spiking Eye Emotion Network (SEEN)
arXiv Detail & Related papers (2023-10-06T06:33:20Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
Event cameras offer new opportunities compared to standard action recognition in RGB videos.
In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame.
In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss ($mathcalL_EC$) and event-specific augmentations.
arXiv Detail & Related papers (2023-08-25T23:51:07Z) - Event-Free Moving Object Segmentation from Moving Ego Vehicle [88.33470650615162]
Moving object segmentation (MOS) in dynamic scenes is an important, challenging, but under-explored research topic for autonomous driving.
Most segmentation methods leverage motion cues obtained from optical flow maps.
We propose to exploit event cameras for better video understanding, which provide rich motion cues without relying on optical flow.
arXiv Detail & Related papers (2023-04-28T23:43:10Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner.
Event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation.
Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars.
arXiv Detail & Related papers (2023-03-17T12:12:41Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes asynchronously.
Deep learning (DL) has been brought to this emerging field and inspired active research endeavors in mining its potential.
arXiv Detail & Related papers (2023-02-17T14:19:28Z) - Representation Learning for Event-based Visuomotor Policies [18.4767874925189]
We present an evental autocoder for unsupervised representation from asynchronous event data.
We show that it is feasible to learn compact representations fromtemporal event data to encode context.
We validate this framework of learning visuomotor policies by applying it to an obstacle avoidance scenario in simulation.
arXiv Detail & Related papers (2021-03-01T07:04:00Z) - Real-Time Face & Eye Tracking and Blink Detection using Event Cameras [3.842206880015537]
Event cameras contain emerging, neuromorphic vision sensors that capture local light intensity changes at each pixel, generating a stream of asynchronous events.
Driver monitoring systems (DMS) are in-cabin safety systems designed to sense and understand a drivers physical and cognitive state.
This paper proposes a novel method to simultaneously detect and track faces and eyes for driver monitoring.
arXiv Detail & Related papers (2020-10-16T10:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.