Impact of Face Alignment on Face Image Quality
- URL: http://arxiv.org/abs/2412.11779v1
- Date: Mon, 16 Dec 2024 13:49:57 GMT
- Title: Impact of Face Alignment on Face Image Quality
- Authors: Eren Onaran, Erdi Sarıtaş, Hazım Kemal Ekenel,
- Abstract summary: The impact of alignment on face image quality has not been thoroughly investigated.
Our study examines the impact of face alignment on face image quality scores.
- Score: 0.0
- License:
- Abstract: Face alignment is a crucial step in preparing face images for feature extraction in facial analysis tasks. For applications such as face recognition, facial expression recognition, and facial attribute classification, alignment is widely utilized during both training and inference to standardize the positions of key landmarks in the face. It is well known that the application and method of face alignment significantly affect the performance of facial analysis models. However, the impact of alignment on face image quality has not been thoroughly investigated. Current FIQA studies often assume alignment as a prerequisite but do not explicitly evaluate how alignment affects quality metrics, especially with the advent of modern deep learning-based detectors that integrate detection and landmark localization. To address this need, our study examines the impact of face alignment on face image quality scores. We conducted experiments on the LFW, IJB-B, and SCFace datasets, employing MTCNN and RetinaFace models for face detection and alignment. To evaluate face image quality, we utilized several assessment methods, including SER-FIQ, FaceQAN, DifFIQA, and SDD-FIQA. Our analysis included examining quality score distributions for the LFW and IJB-B datasets and analyzing average quality scores at varying distances in the SCFace dataset. Our findings reveal that face image quality assessment methods are sensitive to alignment. Moreover, this sensitivity increases under challenging real-life conditions, highlighting the importance of evaluating alignment's role in quality assessment.
Related papers
- Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
The metric of measuring the quality in most face swapping methods relies on several distances between the manipulated images and the source image.
We present a novel no-reference image quality assessment (NR-IQA) method specifically designed for face swapping.
arXiv Detail & Related papers (2024-06-04T01:36:29Z) - DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis [71.40724659748787]
DiffusionFace is the first diffusion-based face forgery dataset.
It covers various forgery categories, including unconditional and Text Guide facial image generation, Img2Img, Inpaint, and Diffusion-based facial exchange algorithms.
It provides essential metadata and a real-world internet-sourced forgery facial image dataset for evaluation.
arXiv Detail & Related papers (2024-03-27T11:32:44Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - AdaFace: Quality Adaptive Margin for Face Recognition [56.99208144386127]
We introduce another aspect of adaptiveness in the loss function, namely the image quality.
We propose a new loss function that emphasizes samples of different difficulties based on their image quality.
Our method, AdaFace, improves the face recognition performance over the state-of-the-art (SoTA) on four datasets.
arXiv Detail & Related papers (2022-04-03T01:23:41Z) - CR-FIQA: Face Image Quality Assessment by Learning Sample Relative
Classifiability [2.3624125155742055]
We propose a novel learning paradigm that learns internal network observations during the training process.
Our proposed CR-FIQA uses this paradigm to estimate the face image quality of a sample by predicting its relative classifiability.
We demonstrate the superiority of our proposed CR-FIQA over state-of-the-art (SOTA) FIQA algorithms.
arXiv Detail & Related papers (2021-12-13T12:18:43Z) - A Deep Insight into Measuring Face Image Utility with General and
Face-specific Image Quality Metrics [5.770286315818393]
General image quality metrics can be used on the global image and relate to human perceptions.
Our results reveal a clear correlation between learned image metrics to face image utility even without being specifically trained as a face utility measure.
arXiv Detail & Related papers (2021-10-21T12:56:38Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - Face Image Quality Assessment: A Literature Survey [16.647739693192236]
This survey provides an overview of the face image quality assessment literature, which predominantly focuses on visible wavelength face image input.
A trend towards deep learning based methods is observed, including notable conceptual differences among the recent approaches.
arXiv Detail & Related papers (2020-09-02T14:26:12Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
We propose a method for generating image quality training data automatically from'mated-pairs' of face images.
We use the generated data to train a lightweight Predictive Confidence Network, termed as PCNet, for estimating the confidence score of a face image.
arXiv Detail & Related papers (2020-09-01T17:52:00Z) - Face Quality Estimation and Its Correlation to Demographic and
Non-Demographic Bias in Face Recognition [15.431761867166]
Face quality assessment aims at estimating the utility of a face image for the purpose of recognition.
Currently, the high performance of these face recognition systems come with the cost of a strong bias against demographic and non-demographic sub-groups.
Recent work has shown that face quality assessment algorithms should adapt to the deployed face recognition system, in order to achieve highly accurate and robust quality estimations.
arXiv Detail & Related papers (2020-04-02T14:19:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.