A Theory of Formalisms for Representing Knowledge
- URL: http://arxiv.org/abs/2412.11855v2
- Date: Sun, 29 Dec 2024 13:14:29 GMT
- Title: A Theory of Formalisms for Representing Knowledge
- Authors: Heng Zhang, Guifei Jiang, Donghui Quan,
- Abstract summary: There has been a longstanding dispute over which formalism is the best for representing knowledge in AI.
We propose a general framework to capture various knowledge representation formalisms in which we are interested.
- Score: 6.577225204907418
- License:
- Abstract: There has been a longstanding dispute over which formalism is the best for representing knowledge in AI. The well-known "declarative vs. procedural controversy" is concerned with the choice of utilizing declarations or procedures as the primary mode of knowledge representation. The ongoing debate between symbolic AI and connectionist AI also revolves around the question of whether knowledge should be represented implicitly (e.g., as parametric knowledge in deep learning and large language models) or explicitly (e.g., as logical theories in traditional knowledge representation and reasoning). To address these issues, we propose a general framework to capture various knowledge representation formalisms in which we are interested. Within the framework, we find a family of universal knowledge representation formalisms, and prove that all universal formalisms are recursively isomorphic. Moreover, we show that all pairwise intertranslatable formalisms that admit the padding property are also recursively isomorphic. These imply that, up to an offline compilation, all universal (or natural and equally expressive) representation formalisms are in fact the same, which thus provides a partial answer to the aforementioned dispute.
Related papers
- Dialogue-based Explanations for Logical Reasoning using Structured Argumentation [0.06138671548064355]
We identify structural weaknesses of the state-of-the-art and propose a generic argumentation-based approach to address these problems.
Our work provides dialogue models as dialectic-proof procedures to compute and explain a query answer.
This allows us to construct dialectical proof trees as explanations, which are more expressive and arguably more intuitive than existing explanation formalisms.
arXiv Detail & Related papers (2025-02-16T22:26:18Z) - A Complexity-Based Theory of Compositionality [53.025566128892066]
In AI, compositional representations can enable a powerful form of out-of-distribution generalization.
Here, we propose a formal definition of compositionality that accounts for and extends our intuitions about compositionality.
The definition is conceptually simple, quantitative, grounded in algorithmic information theory, and applicable to any representation.
arXiv Detail & Related papers (2024-10-18T18:37:27Z) - The Geometry of Categorical and Hierarchical Concepts in Large Language Models [15.126806053878855]
We show how to extend the formalization of the linear representation hypothesis to represent features (e.g., is_animal) as vectors.
We use the formalization to prove a relationship between the hierarchical structure of concepts and the geometry of their representations.
We validate these theoretical results on the Gemma and LLaMA-3 large language models, estimating representations for 900+ hierarchically related concepts using data from WordNet.
arXiv Detail & Related papers (2024-06-03T16:34:01Z) - Logical Reasoning over Natural Language as Knowledge Representation: A
Survey [43.29703101875716]
This paper provides an overview on a new paradigm of logical reasoning, which uses natural language as knowledge representation and pretrained language models as reasoners.
This new paradigm is promising since it not only alleviates many challenges of formal representation but also has advantages over end-to-end neural methods.
arXiv Detail & Related papers (2023-03-21T16:56:05Z) - On the Complexity of Representation Learning in Contextual Linear
Bandits [110.84649234726442]
We show that representation learning is fundamentally more complex than linear bandits.
In particular, learning with a given set of representations is never simpler than learning with the worst realizable representation in the set.
arXiv Detail & Related papers (2022-12-19T13:08:58Z) - Learning Algebraic Representation for Systematic Generalization in
Abstract Reasoning [109.21780441933164]
We propose a hybrid approach to improve systematic generalization in reasoning.
We showcase a prototype with algebraic representation for the abstract spatial-temporal task of Raven's Progressive Matrices (RPM)
We show that the algebraic representation learned can be decoded by isomorphism to generate an answer.
arXiv Detail & Related papers (2021-11-25T09:56:30Z) - Fact-driven Logical Reasoning for Machine Reading Comprehension [82.58857437343974]
We are motivated to cover both commonsense and temporary knowledge clues hierarchically.
Specifically, we propose a general formalism of knowledge units by extracting backbone constituents of the sentence.
We then construct a supergraph on top of the fact units, allowing for the benefit of sentence-level (relations among fact groups) and entity-level interactions.
arXiv Detail & Related papers (2021-05-21T13:11:13Z) - Provable Limitations of Acquiring Meaning from Ungrounded Form: What
will Future Language Models Understand? [87.20342701232869]
We investigate the abilities of ungrounded systems to acquire meaning.
We study whether assertions enable a system to emulate representations preserving semantic relations like equivalence.
We find that assertions enable semantic emulation if all expressions in the language are referentially transparent.
However, if the language uses non-transparent patterns like variable binding, we show that emulation can become an uncomputable problem.
arXiv Detail & Related papers (2021-04-22T01:00:17Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
This report shows how representation learning can be used to induce concepts from raw data.
The main technical goal of this report is to show how techniques from representation learning can be married with a lattice-theoretic formulation of conceptual spaces.
arXiv Detail & Related papers (2021-01-13T15:22:01Z) - Abstract Interpretation in Formal Argumentation: with a Galois
Connection for Abstract Dialectical Frameworks and May-Must Argumentation
(First Report) [3.7311680121118336]
Labelling-based formal argumentation relies on labelling functions that typically assign one of 3 labels to indicate either acceptance, rejection, or else undecided-to-be-either.
Abstract dialectical frameworks (ADF) is a well-known argumentation formalism that belongs to this category.
We prove that there is a Galois connection between MMA and ADF, in which is a concretisation of MMA and MMA is an abstraction of ADF.
arXiv Detail & Related papers (2020-07-22T04:26:15Z) - Plausible Reasoning about EL-Ontologies using Concept Interpolation [27.314325986689752]
We propose an inductive mechanism which is based on a clear model-theoretic semantics, and can thus be tightly integrated with standard deductive reasoning.
We focus on inference, a powerful commonsense reasoning mechanism which is closely related to cognitive models of category-based induction.
arXiv Detail & Related papers (2020-06-25T14:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.