CAP4D: Creating Animatable 4D Portrait Avatars with Morphable Multi-View Diffusion Models
- URL: http://arxiv.org/abs/2412.12093v1
- Date: Mon, 16 Dec 2024 18:58:51 GMT
- Title: CAP4D: Creating Animatable 4D Portrait Avatars with Morphable Multi-View Diffusion Models
- Authors: Felix Taubner, Ruihang Zhang, Mathieu Tuli, David B. Lindell,
- Abstract summary: CAP4D is an approach that uses a morphable multi-view diffusion model to reconstruct photoreal 4D portrait avatars from any number of reference images.
Our approach demonstrates state-of-the-art performance for single-, few-, and multi-image 4D portrait avatar reconstruction.
- Score: 9.622857933809067
- License:
- Abstract: Reconstructing photorealistic and dynamic portrait avatars from images is essential to many applications including advertising, visual effects, and virtual reality. Depending on the application, avatar reconstruction involves different capture setups and constraints $-$ for example, visual effects studios use camera arrays to capture hundreds of reference images, while content creators may seek to animate a single portrait image downloaded from the internet. As such, there is a large and heterogeneous ecosystem of methods for avatar reconstruction. Techniques based on multi-view stereo or neural rendering achieve the highest quality results, but require hundreds of reference images. Recent generative models produce convincing avatars from a single reference image, but visual fidelity yet lags behind multi-view techniques. Here, we present CAP4D: an approach that uses a morphable multi-view diffusion model to reconstruct photoreal 4D (dynamic 3D) portrait avatars from any number of reference images (i.e., one to 100) and animate and render them in real time. Our approach demonstrates state-of-the-art performance for single-, few-, and multi-image 4D portrait avatar reconstruction, and takes steps to bridge the gap in visual fidelity between single-image and multi-view reconstruction techniques.
Related papers
- AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction [26.82525451095629]
We propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference.
We recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting.
Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images.
arXiv Detail & Related papers (2024-12-03T18:55:39Z) - TextToon: Real-Time Text Toonify Head Avatar from Single Video [34.07760625281835]
We propose TextToon, a method to generate a drivable toonified avatar.
Given a short monocular video sequence and a written instruction about the avatar style, our model can generate a high-fidelity toonified avatar.
arXiv Detail & Related papers (2024-09-23T15:04:45Z) - GenCA: A Text-conditioned Generative Model for Realistic and Drivable Codec Avatars [44.8290935585746]
Photo-realistic and controllable 3D avatars are crucial for various applications such as virtual and mixed reality (VR/MR), telepresence, gaming, and film production.
Traditional methods for avatar creation often involve time-consuming scanning and reconstruction processes for each avatar.
We propose a text-conditioned generative model that can generate photo-realistic facial avatars of diverse identities.
arXiv Detail & Related papers (2024-08-24T21:25:22Z) - Instant 3D Human Avatar Generation using Image Diffusion Models [37.45927867788691]
AvatarPopUp is a method for fast, high quality 3D human avatar generation from different input modalities.
Our approach can produce a 3D model in as few as 2 seconds.
arXiv Detail & Related papers (2024-06-11T17:47:27Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - OTAvatar: One-shot Talking Face Avatar with Controllable Tri-plane
Rendering [81.55960827071661]
Controllability, generalizability and efficiency are the major objectives of constructing face avatars represented by neural implicit field.
We propose One-shot Talking face Avatar (OTAvatar), which constructs face avatars by a generalized controllable tri-plane rendering solution.
arXiv Detail & Related papers (2023-03-26T09:12:03Z) - PointAvatar: Deformable Point-based Head Avatars from Videos [103.43941945044294]
PointAvatar is a deformable point-based representation that disentangles the source color into intrinsic albedo and normal-dependent shading.
We show that our method is able to generate animatable 3D avatars using monocular videos from multiple sources.
arXiv Detail & Related papers (2022-12-16T10:05:31Z) - AvatarGen: a 3D Generative Model for Animatable Human Avatars [108.11137221845352]
AvatarGen is the first method that enables not only non-rigid human generation with diverse appearance but also full control over poses and viewpoints.
To model non-rigid dynamics, it introduces a deformation network to learn pose-dependent deformations in the canonical space.
Our method can generate animatable human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs.
arXiv Detail & Related papers (2022-08-01T01:27:02Z) - MVP-Human Dataset for 3D Human Avatar Reconstruction from Unconstrained
Frames [59.37430649840777]
We present 3D Avatar Reconstruction in the wild (ARwild), which first reconstructs the implicit skinning fields in a multi-level manner.
We contribute a large-scale dataset, MVP-Human, which contains 400 subjects, each of which has 15 scans in different poses.
Overall, benefits from the specific network architecture and the diverse data, the trained model enables 3D avatar reconstruction from unconstrained frames.
arXiv Detail & Related papers (2022-04-24T03:57:59Z) - Pixel Codec Avatars [99.36561532588831]
Pixel Codec Avatars (PiCA) is a deep generative model of 3D human faces.
On a single Oculus Quest 2 mobile VR headset, 5 avatars are rendered in realtime in the same scene.
arXiv Detail & Related papers (2021-04-09T23:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.