Causal Diffusion Transformers for Generative Modeling
- URL: http://arxiv.org/abs/2412.12095v2
- Date: Tue, 17 Dec 2024 18:45:55 GMT
- Title: Causal Diffusion Transformers for Generative Modeling
- Authors: Chaorui Deng, Deyao Zhu, Kunchang Li, Shi Guang, Haoqi Fan,
- Abstract summary: We introduce Causal Diffusion as the autoregressive (AR) counterpart of Diffusion models.
CaulFusion is a decoder-only transformer that dual-factorizes data across sequential tokens and diffusion noise levels.
- Score: 19.919979972882466
- License:
- Abstract: We introduce Causal Diffusion as the autoregressive (AR) counterpart of Diffusion models. It is a next-token(s) forecasting framework that is friendly to both discrete and continuous modalities and compatible with existing next-token prediction models like LLaMA and GPT. While recent works attempt to combine diffusion with AR models, we show that introducing sequential factorization to a diffusion model can substantially improve its performance and enables a smooth transition between AR and diffusion generation modes. Hence, we propose CausalFusion - a decoder-only transformer that dual-factorizes data across sequential tokens and diffusion noise levels, leading to state-of-the-art results on the ImageNet generation benchmark while also enjoying the AR advantage of generating an arbitrary number of tokens for in-context reasoning. We further demonstrate CausalFusion's multimodal capabilities through a joint image generation and captioning model, and showcase CausalFusion's ability for zero-shot in-context image manipulations. We hope that this work could provide the community with a fresh perspective on training multimodal models over discrete and continuous data.
Related papers
- Dual Diffusion for Unified Image Generation and Understanding [32.7554623473768]
We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation.
We leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly.
Our model attained competitive performance compared to recent unified image understanding and generation models.
arXiv Detail & Related papers (2024-12-31T05:49:00Z) - RDPM: Solve Diffusion Probabilistic Models via Recurrent Token Prediction [17.005198258689035]
Diffusion Probabilistic Models (DPMs) have emerged as the de facto approach for high-fidelity image synthesis.
We introduce a novel generative framework, the Recurrent Diffusion Probabilistic Model (RDPM), which enhances the diffusion process through a recurrent token prediction mechanism.
arXiv Detail & Related papers (2024-12-24T12:28:19Z) - ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer [95.80384464922147]
Continuous visual generation requires the full-sequence diffusion-based approach.
We present ACDiT, an Autoregressive blockwise Conditional Diffusion Transformer.
We demonstrate that ACDiT can be seamlessly used in visual understanding tasks despite being trained on the diffusion objective.
arXiv Detail & Related papers (2024-12-10T18:13:20Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation? [10.72249123249003]
We revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding.
We introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions.
LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS dataset with 38.2 BLEU@4 and 126.2 CIDEr.
arXiv Detail & Related papers (2024-04-16T17:47:16Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
diffusion models have quickly become the prevailing approach to generative modeling in many domains.
We propose an energy-based parameterization of diffusion models which enables the use of new compositional operators.
We find these samplers lead to notable improvements in compositional generation across a wide set of problems.
arXiv Detail & Related papers (2023-02-22T18:48:46Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.