Seamless Optical Cloud Computing across Edge-Metro Network for Generative AI
- URL: http://arxiv.org/abs/2412.12126v1
- Date: Wed, 04 Dec 2024 11:49:13 GMT
- Title: Seamless Optical Cloud Computing across Edge-Metro Network for Generative AI
- Authors: Sizhe Xing, Aolong Sun, Chengxi Wang, Yizhi Wang, Boyu Dong, Junhui Hu, Xuyu Deng, An Yan, Yingjun Liu, Fangchen Hu, Zhongya Li, Ouhan Huang, Junhao Zhao, Yingjun Zhou, Ziwei Li, Jianyang Shi, Xi Xiao, Richard Penty, Qixiang Cheng, Nan Chi, Junwen Zhang,
- Abstract summary: We propose and experimentally demonstrate an optical cloud computing system that can be seamlessly deployed across edge-metro network.
By modulating inputs and models into light, a wide range of edge nodes can directly access the optical computing center via the edge-metro network.
The experimental validations show an energy efficiency of 118.6 mW/TOPs (tera operations per second), reducing energy consumption by two orders of magnitude compared to traditional electronic-based cloud computing solutions.
- Score: 11.50609298355243
- License:
- Abstract: The rapid advancement of generative artificial intelligence (AI) in recent years has profoundly reshaped modern lifestyles, necessitating a revolutionary architecture to support the growing demands for computational power. Cloud computing has become the driving force behind this transformation. However, it consumes significant power and faces computation security risks due to the reliance on extensive data centers and servers in the cloud. Reducing power consumption while enhancing computational scale remains persistent challenges in cloud computing. Here, we propose and experimentally demonstrate an optical cloud computing system that can be seamlessly deployed across edge-metro network. By modulating inputs and models into light, a wide range of edge nodes can directly access the optical computing center via the edge-metro network. The experimental validations show an energy efficiency of 118.6 mW/TOPs (tera operations per second), reducing energy consumption by two orders of magnitude compared to traditional electronic-based cloud computing solutions. Furthermore, it is experimentally validated that this architecture can perform various complex generative AI models through parallel computing to achieve image generation tasks.
Related papers
- A Hardware-Efficient Photonic Tensor Core: Accelerating Deep Neural Networks with Structured Compression [15.665630650382226]
AI and deep neural networks (DNNs) have revolutionized numerous fields, enabling complex tasks by extracting intricate features from large datasets.
Optical computing offers a promising alternative due to its inherent advantages of parallelism, high computational speed, and low power consumption.
We introduce a block-circulant photonic tensor core (CirPTC) for a structure-compressed optical neural network (StrC-ONN) architecture.
arXiv Detail & Related papers (2025-02-01T17:03:45Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Computing in the Era of Large Generative Models: From Cloud-Native to
AI-Native [46.7766555589807]
We describe an AI-native computing paradigm that harnesses the power of both cloudnative technologies and advanced machine learning inference.
These joint efforts aim to optimize costs-of-goods-sold (COGS) and improve resource accessibility.
arXiv Detail & Related papers (2024-01-17T20:34:11Z) - Spike-based Neuromorphic Computing for Next-Generation Computer Vision [1.2367795537503197]
Neuromorphic Computing promises orders of magnitude improvement in energy efficiency compared to traditional von Neumann computing paradigm.
The goal is to develop an adaptive, fault-tolerant, low-footprint, fast, low-energy intelligent system by learning and emulating brain functionality.
arXiv Detail & Related papers (2023-10-15T01:05:35Z) - Molecular Dynamics Simulations on Cloud Computing and Machine Learning
Platforms [0.8093262393618671]
We see a paradigm shift in the computational structure, design, and requirements of scientific computing applications.
Data-driven and machine learning approaches are being used to support, speed-up, and enhance scientific computing applications.
Cloud computing platforms are increasingly appealing for scientific computing.
arXiv Detail & Related papers (2021-11-11T21:20:26Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.