Adapting Unsigned Graph Neural Networks for Signed Graphs: A Few-Shot Prompt Tuning Approach
- URL: http://arxiv.org/abs/2412.12155v1
- Date: Wed, 11 Dec 2024 09:22:46 GMT
- Title: Adapting Unsigned Graph Neural Networks for Signed Graphs: A Few-Shot Prompt Tuning Approach
- Authors: Zian Zhai, Sima Qing, Xiaoyang Wang, Wenjie Zhang,
- Abstract summary: Graph Neural Networks (GNNs) are powerful tools for signed graph representation learning but struggle with limited generalization and heavy dependence on labeled data.
We propose Signed Graph Prompt Tuning (SGPT) to transfer knowledge from unsigned graphs to signed graph tasks.
Specifically, SGPT employs a graph template and a semantic prompt to segregate mixed link semantics in the signed graph and then adaptively integrate the distinctive semantic information according to the needs of downstream tasks.
- Score: 8.42756062274768
- License:
- Abstract: Signed Graph Neural Networks (SGNNs) are powerful tools for signed graph representation learning but struggle with limited generalization and heavy dependence on labeled data. While recent advancements in "graph pre-training and prompt tuning" have reduced label dependence in Graph Neural Networks (GNNs) and improved their generalization abilities by leveraging pre-training knowledge, these efforts have focused exclusively on unsigned graphs. The scarcity of publicly available signed graph datasets makes it essential to transfer knowledge from unsigned graphs to signed graph tasks. However, this transfer introduces significant challenges due to the graph-level and task-level divergences between the pre-training and downstream phases. To address these challenges, we propose Signed Graph Prompt Tuning (SGPT) in this paper. Specifically, SGPT employs a graph template and a semantic prompt to segregate mixed link semantics in the signed graph and then adaptively integrate the distinctive semantic information according to the needs of downstream tasks, thereby unifying the pre-training and downstream graphs. Additionally, SGPT utilizes a task template and a feature prompt to reformulate the downstream signed graph tasks, aligning them with pre-training tasks to ensure a unified optimization objective and consistent feature space across tasks. Finally, extensive experiments are conducted on popular signed graph datasets, demonstrating the superiority of SGPT over state-of-the-art methods.
Related papers
- Instance-Aware Graph Prompt Learning [71.26108600288308]
We introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this paper.
The process involves generating intermediate prompts for each instance using a lightweight architecture.
Experiments conducted on multiple datasets and settings showcase the superior performance of IA-GPL compared to state-of-the-art baselines.
arXiv Detail & Related papers (2024-11-26T18:38:38Z) - GraphAlign: Pretraining One Graph Neural Network on Multiple Graphs via Feature Alignment [30.56443056293688]
Graph self-supervised learning (SSL) holds considerable promise for mining and learning with graph-structured data.
In this work, we aim to pretrain one graph neural network (GNN) on a varied collection of graphs endowed with rich node features.
We present a general GraphAlign method that can be seamlessly integrated into the existing graph SSL framework.
arXiv Detail & Related papers (2024-06-05T05:22:32Z) - Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs [20.406549548630156]
GraphPrompt is a novel pre-training and prompting framework on graphs.
It unifies pre-training and downstream tasks into a common task template.
It also employs a learnable prompt to assist a downstream task in locating the most relevant knowledge from the pre-trained model.
arXiv Detail & Related papers (2023-11-26T14:35:28Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
Fine-tuning is resource-intensive and requires storing multiple copies of large models.
We propose a novel approach called deep graph prompt tuning as an alternative to fine-tuning.
By freezing the pre-trained parameters and only updating the added tokens, our approach reduces the number of free parameters and eliminates the need for multiple model copies.
arXiv Detail & Related papers (2023-09-18T20:12:17Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Multi-View Graph Representation Learning Beyond Homophily [2.601278669926709]
Unsupervised graph representation learning(GRL) aims to distill diverse graph information into task-agnostic embeddings without label supervision.
A novel framework, denoted as Multi-view Graph(MVGE) is proposed, and a set of key designs are identified.
arXiv Detail & Related papers (2023-04-15T08:35:49Z) - GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural
Networks [16.455234748896157]
GraphPrompt is a novel pre-training and prompting framework on graphs.
It unifies pre-training and downstream tasks into a common task template.
It also employs a learnable prompt to assist a downstream task in locating the most relevant knowledge from the pre-train model.
arXiv Detail & Related papers (2023-02-16T02:51:38Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.