Multi-Surrogate-Teacher Assistance for Representation Alignment in Fingerprint-based Indoor Localization
- URL: http://arxiv.org/abs/2412.12189v1
- Date: Fri, 13 Dec 2024 22:00:26 GMT
- Title: Multi-Surrogate-Teacher Assistance for Representation Alignment in Fingerprint-based Indoor Localization
- Authors: Son Minh Nguyen, Linh Duy Tran, Duc Viet Le, Paul J. M Havinga,
- Abstract summary: We propose a plug-and-play framework for learning transferable representations among Received Signal Strength ( RSS) fingerprint datasets.<n>This work includes two main phases: Expert Training and Expert Distilling.<n>Experiments conducted on three benchmark WiFi RSS fingerprint datasets underscore the effectiveness of the framework.
- Score: 0.5199807441687141
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite remarkable progress in knowledge transfer across visual and textual domains, extending these achievements to indoor localization, particularly for learning transferable representations among Received Signal Strength (RSS) fingerprint datasets, remains a challenge. This is due to inherent discrepancies among these RSS datasets, largely including variations in building structure, the input number and disposition of WiFi anchors. Accordingly, specialized networks, which were deprived of the ability to discern transferable representations, readily incorporate environment-sensitive clues into the learning process, hence limiting their potential when applied to specific RSS datasets. In this work, we propose a plug-and-play (PnP) framework of knowledge transfer, facilitating the exploitation of transferable representations for specialized networks directly on target RSS datasets through two main phases. Initially, we design an Expert Training phase, which features multiple surrogate generative teachers, all serving as a global adapter that homogenizes the input disparities among independent source RSS datasets while preserving their unique characteristics. In a subsequent Expert Distilling phase, we continue introducing a triplet of underlying constraints that requires minimizing the differences in essential knowledge between the specialized network and surrogate teachers through refining its representation learning on the target dataset. This process implicitly fosters a representational alignment in such a way that is less sensitive to specific environmental dynamics. Extensive experiments conducted on three benchmark WiFi RSS fingerprint datasets underscore the effectiveness of the framework that significantly exerts the full potential of specialized networks in localization.
Related papers
- FedRSClip: Federated Learning for Remote Sensing Scene Classification Using Vision-Language Models [23.830133838392964]
We propose FedRSCLIP, the first federated learning framework for remote sensing image classification based on a VLM, specifically CLIP.
FedRSCLIP addresses the challenges of data heterogeneity and large-scale model transmission in federated environments by introducing Prompt Learning.
To validate the effectiveness of our proposed model, we construct a Fed-RSIC dataset based on three existing remote sensing image classification datasets.
arXiv Detail & Related papers (2025-01-05T07:10:27Z) - FMRT: Learning Accurate Feature Matching with Reconciliatory Transformer [29.95553680263075]
We propose Feature Matching with Reconciliatory Transformer (FMRT), a detector-free method that reconciles different features with multiple receptive fields adaptively.
FMRT yields extraordinary performance on multiple benchmarks, including pose estimation, visual localization, homography estimation, and image matching.
arXiv Detail & Related papers (2023-10-20T15:54:18Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
This study investigates the transferability of deep learning representations between different EEG decoding tasks.
We conduct extensive experiments using state-of-the-art decoding models on two recently released EEG datasets.
arXiv Detail & Related papers (2023-07-28T14:51:09Z) - Feature Disentanglement Learning with Switching and Aggregation for
Video-based Person Re-Identification [9.068045610800667]
In video person re-identification (Re-ID), the network must consistently extract features of the target person from successive frames.
Existing methods tend to focus only on how to use temporal information, which often leads to networks being fooled by similar appearances and same backgrounds.
We propose a Disentanglement and Switching and Aggregation Network (DSANet), which segregates the features representing identity and features based on camera characteristics, and pays more attention to ID information.
arXiv Detail & Related papers (2022-12-16T04:27:56Z) - Self-Supervised Graph Neural Network for Multi-Source Domain Adaptation [51.21190751266442]
Domain adaptation (DA) tries to tackle the scenarios when the test data does not fully follow the same distribution of the training data.
By learning from large-scale unlabeled samples, self-supervised learning has now become a new trend in deep learning.
We propose a novel textbfSelf-textbfSupervised textbfGraph Neural Network (SSG) to enable more effective inter-task information exchange and knowledge sharing.
arXiv Detail & Related papers (2022-04-08T03:37:56Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Sense and Learn: Self-Supervision for Omnipresent Sensors [9.442811508809994]
We present a framework named Sense and Learn for representation or feature learning from raw sensory data.
It consists of several auxiliary tasks that can learn high-level and broadly useful features entirely from unannotated data without any human involvement in the tedious labeling process.
Our methodology achieves results that are competitive with the supervised approaches and close the gap through fine-tuning a network while learning the downstream tasks in most cases.
arXiv Detail & Related papers (2020-09-28T11:57:43Z) - Federated Self-Supervised Learning of Multi-Sensor Representations for
Embedded Intelligence [8.110949636804772]
Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models.
We propose a self-supervised approach termed textitscalogram-signal correspondence learning based on wavelet transform to learn useful representations from unlabeled sensor inputs.
We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains.
arXiv Detail & Related papers (2020-07-25T21:59:17Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
We show that features that are most transferable have high uniformity in the embedding space.
We evaluate the regularization on its ability to facilitate adaptation to unseen tasks and data.
arXiv Detail & Related papers (2020-06-30T04:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.