Provably Secure Robust Image Steganography via Cross-Modal Error Correction
- URL: http://arxiv.org/abs/2412.12206v1
- Date: Sun, 15 Dec 2024 16:10:10 GMT
- Title: Provably Secure Robust Image Steganography via Cross-Modal Error Correction
- Authors: Yuang Qi, Kejiang Chen, Na Zhao, Zijin Yang, Weiming Zhang,
- Abstract summary: We propose a high-quality, provably secure, and robust image steganography method based on state-of-the-art autoregressive (AR) image generation models.
We employ a cross-modal error-correction framework that generates stego text from stego images to aid in restoring lossy images.
- Score: 23.087977275900396
- License:
- Abstract: The rapid development of image generation models has facilitated the widespread dissemination of generated images on social networks, creating favorable conditions for provably secure image steganography. However, existing methods face issues such as low quality of generated images and lack of semantic control in the generation process. To leverage provably secure steganography with more effective and high-performance image generation models, and to ensure that stego images can accurately extract secret messages even after being uploaded to social networks and subjected to lossy processing such as JPEG compression, we propose a high-quality, provably secure, and robust image steganography method based on state-of-the-art autoregressive (AR) image generation models using Vector-Quantized (VQ) tokenizers. Additionally, we employ a cross-modal error-correction framework that generates stego text from stego images to aid in restoring lossy images, ultimately enabling the extraction of secret messages embedded within the images. Extensive experiments have demonstrated that the proposed method provides advantages in stego quality, embedding capacity, and robustness, while ensuring provable undetectability.
Related papers
- Image Super-Resolution with Guarantees via Conformal Generative Models [0.66567375919026]
We present a "confidence mask" capable of reliably and intuitively communicating where the generated image can be trusted.
Our method is adaptable to any black-box generative model, including those locked behind an API.
We prove strong theoretical guarantees for our method that span fidelity error control, reconstruction quality, and robustness in the face of data leakage.
arXiv Detail & Related papers (2025-02-12T13:14:57Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Robust Message Embedding via Attention Flow-Based Steganography [34.35209322360329]
Image steganography can hide information in a host image and obtain a stego image that is perceptually indistinguishable from the original one.
We propose a novel message embedding framework, called Robust Message Steganography (RMSteg), which is competent to hide message via QR Code in a host image.
arXiv Detail & Related papers (2024-05-26T03:16:40Z) - Regeneration Based Training-free Attribution of Fake Images Generated by
Text-to-Image Generative Models [39.33821502730661]
We present a training-free method to attribute fake images generated by text-to-image models to their source models.
By calculating and ranking the similarity of the test image and the candidate images, we can determine the source of the image.
arXiv Detail & Related papers (2024-03-03T11:55:49Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
We present ENTED, a new framework for blind face restoration that aims to restore high-quality and realistic portrait images.
We utilize a texture extraction and distribution framework to transfer high-quality texture features between the degraded input and reference image.
The StyleGAN-like architecture in our framework requires high-quality latent codes to generate realistic images.
arXiv Detail & Related papers (2024-01-13T04:54:59Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
Diffusion-based image generation models can create artistic images that mimic the style of an artist or maliciously edit the original images for fake content.
Several attempts have been made to protect the original images from such unauthorized data usage by adding imperceptible perturbations.
In this work, we introduce a purification perturbation platform, named IMPRESS, to evaluate the effectiveness of imperceptible perturbations as a protective measure.
arXiv Detail & Related papers (2023-10-30T03:33:41Z) - CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster
Image Generation [49.3016007471979]
Large generative diffusion models have revolutionized text-to-image generation and offer immense potential for conditional generation tasks.
However, their widespread adoption is hindered by the high computational cost, which limits their real-time application.
We introduce a novel method dubbed CoDi, that adapts a pre-trained latent diffusion model to accept additional image conditioning inputs.
arXiv Detail & Related papers (2023-10-02T17:59:18Z) - Multi-Modality Deep Network for JPEG Artifacts Reduction [33.02405073842042]
We propose a multimodal fusion learning method for text-guided JPEG artifacts reduction.
Our method can obtain better deblocking results compared to the state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T11:54:02Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
We develop a new detection method for images that are indistinguishable from real ones.
Our method can detect images from a known generative model and enable us to establish relationships between fine-tuned generative models.
Our approach achieves comparable performance to state-of-the-art pre-trained detection methods on images generated by Stable Diffusion and Midversa.
arXiv Detail & Related papers (2023-03-19T20:31:38Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts.
We propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images.
Our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images.
arXiv Detail & Related papers (2020-06-30T07:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.