Deep Learning for Hydroelectric Optimization: Generating Long-Term River Discharge Scenarios with Ensemble Forecasts from Global Circulation Models
- URL: http://arxiv.org/abs/2412.12234v1
- Date: Mon, 16 Dec 2024 16:37:27 GMT
- Title: Deep Learning for Hydroelectric Optimization: Generating Long-Term River Discharge Scenarios with Ensemble Forecasts from Global Circulation Models
- Authors: Julio Alberto Silva Dias,
- Abstract summary: Hydroelectric power generation is a critical component of the global energy matrix, particularly in countries like Brazil, where it represents the majority of the energy supply.
However, its strong dependence on river discharges, which are inherently uncertain due to climate variability, poses significant challenges.
Traditionally, statistical models have been used to represent river discharges in energy optimization. Yet, these models are increasingly unable to produce realistic scenarios due to structural shifts in climate behavior.
- Score: 0.0
- License:
- Abstract: Hydroelectric power generation is a critical component of the global energy matrix, particularly in countries like Brazil, where it represents the majority of the energy supply. However, its strong dependence on river discharges, which are inherently uncertain due to climate variability, poses significant challenges. River discharges are linked to precipitation patterns, making the development of accurate probabilistic forecasting models crucial for improving operational planning in systems heavily reliant on this resource. Traditionally, statistical models have been used to represent river discharges in energy optimization. Yet, these models are increasingly unable to produce realistic scenarios due to structural shifts in climate behavior. Changes in precipitation patterns have altered discharge dynamics, which traditional approaches struggle to capture. Machine learning methods, while effective as universal predictors for time series, often focus solely on historical data, ignoring key external factors such as meteorological and climatic conditions. Furthermore, these methods typically lack a probabilistic framework, which is vital for representing the inherent variability of hydrological processes. The limited availability of historical discharge data further complicates the application of large-scale deep learning models to this domain. To address these challenges, we propose a framework based on a modified recurrent neural network architecture. This model generates parameterized probability distributions conditioned on projections from global circulation models, effectively accounting for the stochastic nature of river discharges. Additionally, the architecture incorporates enhancements to improve its generalization capabilities. We validate this framework within the Brazilian Interconnected System, using projections from the SEAS5-ECMWF system as conditional variables.
Related papers
- ClimateLLM: Efficient Weather Forecasting via Frequency-Aware Large Language Models [13.740208247043258]
We propose ClimateLLM, a foundation model for weather forecasting.
It captures temporal dependencies via a cross-temporal and cross-spatial collaborative framework.
It integrates frequency decomposition with Large Language Models to strengthen spatial and temporal modeling.
arXiv Detail & Related papers (2025-02-16T09:57:50Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - A Deconfounding Approach to Climate Model Bias Correction [26.68810227550602]
Global Climate Models (GCMs) are crucial for predicting future climate changes by simulating the Earth systems.
GCMs exhibit systematic biases due to model uncertainties, parameterization simplifications, and inadequate representation of complex climate phenomena.
This paper proposes a novel bias correction approach to utilize both GCM and observational data to learn a factor model that captures multi-cause latent confounders.
arXiv Detail & Related papers (2024-08-22T01:53:35Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Learning Generative Models for Lumped Rainfall-Runoff Modeling [3.69758875412828]
This study presents a novel generative modeling approach to rainfall-runoff modeling, focusing on the synthesis of realistic daily catchment runoff time series.
Unlike traditional process-based lumped hydrologic models, our approach uses a small number of latent variables to characterize runoff generation processes.
In this study, we trained the generative models using neural networks on data from over 3,000 global catchments and achieved prediction accuracies comparable to current deep learning models.
arXiv Detail & Related papers (2023-09-18T16:07:41Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Deep learning for improved global precipitation in numerical weather
prediction systems [1.721029532201972]
We use the UNET architecture of a deep convolutional neural network with residual learning as a proof of concept to learn global data-driven models of precipitation.
The results are compared with the operational dynamical model used by the India Meteorological Department.
This study is a proof-of-concept showing that residual learning-based UNET can unravel physical relationships to target precipitation.
arXiv Detail & Related papers (2021-06-20T05:10:42Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.