Towards a Universal Synthetic Video Detector: From Face or Background Manipulations to Fully AI-Generated Content
- URL: http://arxiv.org/abs/2412.12278v1
- Date: Mon, 16 Dec 2024 19:00:19 GMT
- Title: Towards a Universal Synthetic Video Detector: From Face or Background Manipulations to Fully AI-Generated Content
- Authors: Rohit Kundu, Hao Xiong, Vishal Mohanty, Athula Balachandran, Amit K. Roy-Chowdhury,
- Abstract summary: Existing DeepFake detection techniques primarily focus on facial manipulations, such as face-swapping or lip-syncing.
We introduce the underlineUniversal underlineNetwork for underlineIdentifying underlineTampered and synthunderlineEtic videos (textttUNITE) model, which captures full-frame manipulations.
textttUNITE extends detection capabilities to scenarios without faces, non-human subjects, and complex background modifications.
- Score: 20.52229907426726
- License:
- Abstract: Existing DeepFake detection techniques primarily focus on facial manipulations, such as face-swapping or lip-syncing. However, advancements in text-to-video (T2V) and image-to-video (I2V) generative models now allow fully AI-generated synthetic content and seamless background alterations, challenging face-centric detection methods and demanding more versatile approaches. To address this, we introduce the \underline{U}niversal \underline{N}etwork for \underline{I}dentifying \underline{T}ampered and synth\underline{E}tic videos (\texttt{UNITE}) model, which, unlike traditional detectors, captures full-frame manipulations. \texttt{UNITE} extends detection capabilities to scenarios without faces, non-human subjects, and complex background modifications. It leverages a transformer-based architecture that processes domain-agnostic features extracted from videos via the SigLIP-So400M foundation model. Given limited datasets encompassing both facial/background alterations and T2V/I2V content, we integrate task-irrelevant data alongside standard DeepFake datasets in training. We further mitigate the model's tendency to over-focus on faces by incorporating an attention-diversity (AD) loss, which promotes diverse spatial attention across video frames. Combining AD loss with cross-entropy improves detection performance across varied contexts. Comparative evaluations demonstrate that \texttt{UNITE} outperforms state-of-the-art detectors on datasets (in cross-data settings) featuring face/background manipulations and fully synthetic T2V/I2V videos, showcasing its adaptability and generalizable detection capabilities.
Related papers
- Identity-Preserving Text-to-Video Generation by Frequency Decomposition [52.19475797580653]
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity.
This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature.
We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video.
arXiv Detail & Related papers (2024-11-26T13:58:24Z) - PersonalVideo: High ID-Fidelity Video Customization without Dynamic and Semantic Degradation [36.21554597804604]
Identity-specific human video generation with customized ID images is still under-explored.
We propose a novel framework, dubbed textbfPersonalVideo, that applies direct supervision on videos synthesized by the T2V model.
Our method's superiority in delivering high identity faithfulness while preserving the inherent video generation qualities of the original T2V model, outshining prior approaches.
arXiv Detail & Related papers (2024-11-26T02:25:38Z) - Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-attention deepfake detector [15.647035299476894]
This publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN features by combining ResNet with a vision transformer.
The model combines traditional ResNet features with a texture module that operates in parallel on sections of ResNet before each down-sampling operation.
It specifically focuses on improving the global texture module, which extracts feature map correlation.
arXiv Detail & Related papers (2024-08-29T20:26:27Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation [72.90144343056227]
We explore the visual representations produced from a pre-trained text-to-video (T2V) diffusion model for video understanding tasks.
We introduce a novel framework, termed "VD-IT", tailored with dedicatedly designed components built upon a fixed T2V model.
Our VD-IT achieves highly competitive results, surpassing many existing state-of-the-art methods.
arXiv Detail & Related papers (2024-03-18T17:59:58Z) - From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos [88.08209394979178]
Dynamic facial expression recognition (DFER) in the wild is still hindered by data limitations.
We introduce a novel Static-to-Dynamic model (S2D) that leverages existing SFER knowledge and dynamic information implicitly encoded in extracted facial landmark-aware features.
arXiv Detail & Related papers (2023-12-09T03:16:09Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Two-branch Recurrent Network for Isolating Deepfakes in Videos [17.59209853264258]
We present a method for deepfake detection based on a two-branch network structure.
One branch propagates the original information, while the other branch suppresses the face content.
Our two novel components show promising results on the FaceForensics++, Celeb-DF, and Facebook's DFDC preview benchmarks.
arXiv Detail & Related papers (2020-08-08T01:38:56Z) - Dynamic texture analysis for detecting fake faces in video sequences [6.1356022122903235]
This work explores the analysis of texture-temporal dynamics of the video signal.
The goal is to characterizing and distinguishing real fake sequences.
We propose to build multiple binary decision on the joint analysis of temporal segments.
arXiv Detail & Related papers (2020-07-30T07:21:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.